Prediksi Kunjungan Wisatawan Mancanegara Melalui Pintu Udara Menggunakan ARIMA, Glmnet, dan Prophet
DOI:
https://doi.org/10.33633/tc.v21i1.5695Keywords:
Prediksi, Pariwisata, ARIMA, Glmnet, ProphetAbstract
Pariwisata merupakan salah satu industri yang memberikan kemajuan perekonomian negara. Pandemi COVID-19 mengakibatkan industri pariwisata memburuk karena pembatasan kunjungan yang secara luas. Tujuan penelitian ini untuk mendapatkan model terbaik dalam memprediksi kunjungan wisatawan mancanegara ke Indonesia melalui pintu udara dengan membandingkan tiga metode, yaitu ARIMA, Prophet, dan Glmnet. Data yang digunakan adalah data bulanan Badan Pusat Statistik dengan periode Januari 2017 sampai dengan November 2021. Hasil penelitian ini menunjukkan model ARIMA merupakan model terbaik untuk melakukan prediksi dibandingkan model Prophet dan Glmnet karena menghasilkan nilai terbaik pada MAE sebesar 749030.4, MAPE sebesar 23196.45, MASE sebesar 17.86681, SMAPE sebesar 175.9592, dan RMSE sebesar 779670.7. Berdasarkan hasil prediksi menggunakan model ARIMA(1,1,0)(0,0,1)12, dalam 12 bulan berikutnya, menunjukkan kunjungan wisatawan mancanegara ke Indonesia melalui pintu udara cenderung mengalami peningkatan. Menindaklanjuti hasil penelitian ini, bahwa penggunaan kombinasi model harus lebih dioptimalkan untuk pembaharuan dalam teknik peramalan.References
O. A. Putri, Poningsih, dan H. S. Tambunan, “Prediksi Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Jaringan Saraf Tiruan Dengan Algoritma Backpropagation,” Januari, vol. 2, no. 1, hal. 1–7, 2021, [Daring]. Tersedia pada: http://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/51.
bps.go.id, “Berita Resmi Statistik : Perkembangan Pariwisata dan Transportasi Nasional November 2021,” 2021.
I. A. Tarigan, I. P. A. Bayupati, dan G. A. A. Putri, “Comparison of support vector machine and backpropagation models in forecasting the number of foreign tourists in Bali province,” J. Teknol. dan Sist. Komput., vol. 9, no. 2, hal. 90–95, 2021, doi: 10.14710/jtsiskom.2021.13847.
N. Abu, W. N. Syahidah, M. M. Afif, dan S. Z. Nordin, “SARIMA and Exponential Smoothing model for forecasting ecotourism demand: A case study in National Park Kuala Tahan, Pahang,” J. Phys. Conf. Ser., vol. 1988, no. 1, 2021, doi: 10.1088/1742-6596/1988/1/012118.
N. F. Fauzi, N. S. Ahmadi, N. H. Shafii, dan H. Z. Ab Halim, “A Comparison Study on Fuzzy Time Series and Holt-Winter Model in Forecasting Tourist Arrival in Langkawi, Kedah,” J. Comput. Res. Innov., vol. 5, no. 1, hal. 34–43, 2020, doi: 10.24191/jcrinn.v5i1.138.
D. Febrian, S. I. Al Idrus, dan D. A. J. Nainggolan, “The Comparison of Double Moving Average and Double Exponential Smoothing Methods in Forecasting the Number of Foreign Tourists Coming to North Sumatera,” J. Phys. Conf. Ser., vol. 1462, no. 1, 2020, doi: 10.1088/1742-6596/1462/1/012046.
E. N. Sari, B. Susanto, dan A. Setiawan, “Perbandingan Hasil Peramalan Jumlah Wisatawan Mancanegara Dengan Metode Box-Jenkins Dan Exponential Smoothing,” Jambura J. Probab. Stat., vol. 2, no. February 2020, 2021.
bps.go.id, “Jumlah Kunjungan Wisatawan Mancanegara per bulan ke Indonesia Menurut Pintu Masuk, 2017 - sekarang (Kunjungan), 2021,” bps.go.id, 2021. https://www.bps.go.id/indicator/16/1150/1/jumlah-kunjungan-wisatawan-mancanegara-per-bulan-ke-indonesia-menurut-pintu-masuk-2017---sekarang.html (diakses Jan 09, 2022).
S. Jere, A. Banda, B. Kasense, I. Siluyele, dan E. Moyo, “Forecasting Annual International Tourist Arrivals in Zambia Using Holt-Winters Exponential Smoothing,” Open J. Stat., vol. 09, no. 02, hal. 258–267, 2019, doi: 10.4236/ojs.2019.92019.
S. Patandung dan I. Jatnika, “The FB Prophet Model Application to the Growth Prediction of International Tourists in Indonesia during the COVID-19 Pandemic,” vol. 6, no. 2, hal. 110–115, 2021.
S. Engebretsen dan J. Bohlin, “Statistical predictions with glmnet,” Clin. Epigenetics, vol. 11, no. 1, hal. 10–12, 2019, doi: 10.1186/s13148-019-0730-1.
S. Polyzos, A. Samitas, dan A. E. Spyridou, “Tourism demand and the COVID-19 pandemic: an LSTM approach,” Tour. Recreat. Res., vol. 46, no. 2, hal. 175–187, 2021, doi: 10.1080/02508281.2020.1777053.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Fakhrul Mu'minin, Fauziah Fauziah, Aris Gunaryati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/