Prototipe Monitor dan Kontrol Otomatis Iklim Mikro Greenhouse dengan Platform IoT Blynk
DOI:
https://doi.org/10.33633/tc.v21i1.5462Keywords:
Greenhouse, Iklim Mikro, IoT, Arduino Mega 2560 Wifi, BlynkAbstract
Kenaikan total penduduk setiap waktu berdampak langsung terhadap ketersediaan bahan pangan. Petani seringkali mengalami kerugian akibat dari perubahan iklim yang drastis dan sulitnya memprediksi perubahan iklim tersebut. Penelitian ini bertujuan adalah membuat sistem yang dapat melakukan monitor dan kontrol pada elemen suhu, kelembaban udara, kelembaban tanah serta intensitas cahaya secara otomatis pada greenhouse menggunakan perangkat android lewat platform Internet of Things(IoT) yaitu Blynk. ESP8266 sebagai penghubung jaringan internet antara mikrokontroler dan android sudah tertanam di arduino mega 2560 wifi sehingga tidak membutuhkan komponen modul wifi tambahan. Pada sistem ini dilengkapi dengan kamera ESP32-Cam sehingga sistem juga memantau visual tanaman . Sistem berhasil mendeteksi serta mengukur iklim mikro dalam prototipe greenhouse dengan ukuran panjang 110 cm, tinggi 90 cm, dan lebar 60 cm menggunakan sensor DHT11 dengan tingkat error sebesar 2,22% untuk pengukuran suhu, 2,70% untuk pengukuran kelembaban udara, 3,37% untuk kelembaban tanah dengan sensor soil moisture, sensor BH1750 tingkat error sebesar 3,49% untuk intensitas cahaya serta sensor tegangan INA219 dengan nilai error 1,32%. Hasil dari pembuatan sistem ini adalah sistem beroperasi dengan baik dalam arti keadaan iklim mikro mampu dimonitor dan dikontrol otomatis menggunakan android dengan aplikasi Blynk.References
Aswatini, M. Noveria, and Fitranita, “Konsummsi Sayur Dan Buah Di Masyarakat Dalam Konteks Pemenuhan Gizi Seimbang,” J. Kependud. Indones., vol. III, no. 2, pp. 97–119, 2008, [Online]. Available: https://ejurnal.kependudukan.lipi.go.id/index.php/jki/article/download/171/203.
E. Tando, “Review : Pemanfaatan Teknologi Greenhouse Dan Hidroponik Sebagai Solusi Menghadapi Perubahan Iklim Dalam Budidaya Tanaman Hortikultura,” Buana Sains, vol. 19, no. 1, p. 91, 2019, doi: 10.33366/bs.v19i1.1530.
E. Aldrian, M. Karmini, and Budiman, “Adaptation and Mitigation of Climate Change in Indonesia (Adaptasi dan Mitigasi Perubahan Iklim di Indonesia),” Pus. Perubahan Iklim dan Kualitas Udar. BMKG, no. 2, p. 174, 2011, [Online]. Available: www.bmkg.go.id.
Kementerian Pertanian, “Sub-sektor Hortikultura (Horticulture Sub-sector),” 2020. .
BPS et al., “Buletin Pemantauan Ketahanan Pangan indonesia Fokus Khusus: Tren konsumsi dan produksi buah dan sayur,” Ger. Humanit. Assist., vol. 8, no. November, pp. 1–24, 2019, [Online]. Available: https://docs.wfp.org/api/documents/WFP-0000024091/download/.
G. R. North, “Greenhouse Effect and Climate Feedbacks 4 . 1 Greenhouse Effect without Feedbacks 4 . 2 Infrared Spectra of Outgoing Radiation,” pp. 85–117, 2017.
O. Körner, J. M. Aaslyng, A. U. Andreassen, and N. Holst, “Modelling microclimate for dynamic greenhouse climate control,” HortScience, vol. 42, no. 2, pp. 272–279, 2007.
M. A. A. Abdrabbo, A. Negm, H. E. Fath, and A. Javadi, “Greenhouse Management and Best Practice in Egypt,” Int. Water Technol. Journal, IWTJ, vol. 9, no. 4, pp. 12–13, 2019.
M. N. Fahmi, E. Yohana, and Sugiyanto, “Simulasi Distribusi Suhu Dan Kelembapan Relatif,” J. Tek. Mesin, vol. 2, no. 1, pp. 41–48, 2014.
A. Rifqi Fauzi, Casdi, and Warid, “Respon Tanaman Pakcoy (Brassica rapa L.) terhadap Pemberian Pupuk Organik Cair Limbah Perikanan,” J. Hortik. Indones., vol. 10, no. 2, pp. 94–101, 2019, doi: 10.29244/jhi.10.2.94-101.
S. Verma, R. Gala, S. Madhavan, S. Burkule, S. Chauhan, and C. Prakash, “An Internet of Things (IoT) Architecture for Smart Agriculture,” Proc. - 2018 4th Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018, pp. 1–4, 2018, doi: 10.1109/ICCUBEA.2018.8697707.
P. Serikul, N. Nakpong, and N. Nakjuatong, “Smart Farm Monitoring via the Blynk IoT Platform,” 2018 16th Int. Conf. ICT Knowl. Eng., pp. 1–6, 2018.
I.Lakshmi, “Design And Implementation Of Greenhouse Automation And Monitoring System Using Iot,” Ijarcce, vol. 8, no. 5, pp. 136–140, 2019, doi: 10.17148/ijarcce.2019.8527.
Win Sandar Aung | Saw Aung Nyein Oo, “Monitoring and Controlling Device for Smart Greenhouse by using Thinger.io IoT Server,” Int. J. Trend Sci. Res. Dev., vol. 3, no. 4, pp. 1651–1656, 2019, doi: https://doi.org/10.31142/ijtsrd25212.
F. Malinda, N. Sultan, and E. Hasibuan, “Perancangan Sistem Mitigasi Smart Greenhouse Untuk Hidroponik,” J. Ilm. Komputasi, vol. 20, no. 2, pp. 247–258, 2021, doi: 10.32409/jikstik.20.2.2711.
W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi: 10.1109/IAC.2017.8280590.
U. Syafiqoh, S. Sunardi, and A. Yudhana, “Pengembangan Wireless Sensor Network Berbasis Internet of Things untuk Sistem Pemantauan Kualitas Air dan Tanah Pertanian,” J. Inform. J. Pengemb. IT, vol. 3, no. 2, pp. 285–289, 2018, doi: 10.30591/jpit.v3i2.878.
M. PAMUNGKAS, H. HAFIDDUDIN, and Y. S. ROHMAH, “Perancangan dan Realisasi Alat Pengukur Intensitas Cahaya,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 3, no. 2, p. 120, 2015, doi: 10.26760/elkomika.v3i2.120.
N. Indah, Y. Salim, and R. Satra, “Analisis Perbandingan Routing Protokol Open Shortes Path First (Ospf) Dengan Enhanced Interior Gateway Routing Protocol (Eigrp),” Ilk. J. Ilm., vol. 10, no. 1, pp. 92–99, 2018, doi: 10.33096/ilkom.v10i1.205.92-99.
M. K. Ghosal, G. N. Tiwari, N. S. L. Srivastava, and M. S. Sodha, “Thermal modelling and experimental validation of ground temperature distribution in greenhouse,” Int. J. Energy Res., vol. 28, no. 1, pp. 45–63, 2004, doi: 10.1002/er.950.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Dhoni Setyanto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/