Peningkatan Kualitas Citra Reduksi Noise Menggunakan Iterative Denoising and Backward Projection-CNN dan TFM-CLAHE Pada Citra 24 Bit
DOI:
https://doi.org/10.33633/tc.v20i4.5243Keywords:
kontras rendah, noise salt, TFM-CLAHE, IDBP-CNN, kualitas citraAbstract
Penurunan kualitas yang diakibatkan adanya noise atau kontras yang tidak normal pada citra mengakibatkan objek pada citra menjadi tidak jelas. Masalah itu dapat disebabkan perangkat yang digunakan menimbulkan noise atau tidak bisa menghasilkan kontras yang normal. Adanya noise dan kontras rendah gelap berdampak besar terhadap kualitas citra?, proses reduksi noise yang berukuran besar 45% akan berpengaruh pada informasi didalam citra sehingga kualitas citra hasil reduksi menjadi hal yang perlu dipertimbangkan untuk noise berukuran besar?. Penelitian tahun 2019 menggunakan algoritma Iterative Denoising and Backward Projections with CNN (IDBP-CNN) dinyatakan mampu mereduksi noise hingga 51% dengan kualitas PSNR diatas 30 dB dengan mengabaikan kontras dari citra. Sedangkan algoritma untuk meningkatkan kontras citra menggunakan algoritma Triangular Fuzzy Membership?Contrast Limited Adaptive Histogram Equalization (TFM-CLAHE) juga diklaim mampu meningkatkan kontras citra dengan kualitas PSNR di atas 20 dB, yang lebih baik dibandingkan dengan algoritma CLAHE. Berdasarkan hasil pengujian yang dilakukan pada 10 citra kontras rendah gelap dengan noise 45% didapatkan kombinasi algoritma TFM-CLAHE diikuti IDBP-CNN lebih baik dengan rata-rata hasil PSNR = 31.69 dB, dibandingkan sebaliknya PSNR = 31.01 dB, Namun rata-rata keragaman informasi citra hasil dengan kombinasi IDBP-CNN diikuti TFM-CLAHE lebih kecil selisihnya terhadap citra asli berdasarkan Shanon Entropy sebesar 3.77% dibandingkan sebaliknya 4.75%References
J. R. Tang and N. A. M. Isa, “An adaptive fuzzy contrast enhancement algorithm with details preserving,” J. ICT Res. Appl., vol. 8c, no. 2, pp. 126–140, 2014.
A. K. Gupta, “Low Contrast Image Enhancement Technique By Using Fuzzy Method,” Int. J. Eng. Res. Gen. Sci., vol. 4, no. 2, pp. 518–526, 2016.
M. Pitchammal, S. S. Nisha, and M. M. Sathik, “Noise Reduction in MRI Neck Image Using Adaptive Fuzzy Filter in Contourlet Transform,” Int. J. Eng. Sci. Comput., vol. 6, no. 3, pp. 2478–2484, 2016.
S. Gupta and R. K. Sunkaria, “Real-time salt and pepper noise removal from medical images using a modified weighted average filtering,” 2017 4th Int. Conf. Image Inf. Process. ICIIP 2017, vol. 2018-Maret, pp. 238–243, 2018.
T. Gebreyohannes, “Adaptive Noise Reduction Scheme for Salt and Pepper,” Signal Image Process. An Int. J., vol. 2, no. 4, pp. 47–55, 2011.
E. J. Leavline and D. A. A. G. Singh, “Salt and Pepper Noise Detection and Removal in Gray Scale Images: An Experimental Analysis,” Int. J. Signal Process. Image Process. Pattern Recognit., vol. 6, no. 5, pp. 343–352, 2013.
I. A. Pardosi and A. A. Lubis, “Analisis Kualitas Citra Hasil Reduksi Noise Menggunakan Spatial Median Filter dan Adaptive Fuzzy Filter Terhadap Variasi Kedalaman Citra,” Indones. J. Inf. Syst., vol. 1, no. 2, p. 78, 2019.
R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital Image Processing, Third Edition,” J. Biomed. Opt., vol. 14, no. 2, p. 029901, 2009.
I. A. Pardosi et al., “Restorasi Citra Digital Menggunakan Iterative Denoising dan Backward Projections with CNN,” SIFO Mikroskil, vol. 21, no. 1, pp. 37–50, 2020.
I. A. Pardosi, P. Sirait, S. Goh, and R. Chandra, “Perbaikan Citra Gelap dan Pembesaran Objek Citra Menggunakan Gradient Based Low-Light Image Enhancement dan Rational Ball Cubic B-Spline With Genetic Algorithm,” J. SIFO Mikroskil, vol. Vol. 20 No, no. 2, pp. 105–115, 2019.
B. Sree Vidya and E. Chandra, “Triangular Fuzzy Membership-Contrast Limited Adaptive Histogram Equalization (TFM-CLAHE) for Enhancement of Multimodal Biometric Images,” Wirel. Pers. Commun., vol. 106, no. 2, pp. 651–680, 2019.
L. Sitorus, Daniel, N. P. Wong, and I. Pardosi, “Big Data in Pandemic Phase : Innovation and Implementation,” in SEMINAR NASIONAL ILMU KOMPUTER (sniKom 2020), 2020, vol. 148, pp. 364–372.
T. Tirer and R. Giryes, “Image Restoration by Iterative Denoising and Backward Projections,” IEEE Trans. Image Process., vol. 28, no. 3, pp. 1220–1234, 2018.
J. Al-Azzeh, B. Zahran, and Z. Alqadi, “Salt and pepper noise: Effects and removal,” Int. J. Informatics Vis., vol. 2, no. 4, pp. 252–256, 2018.
J. C. M. Román, J. L. V. Noguera, H. Legal-Ayala, D. P. Pinto-Roa, S. Gomez-Guerrero, and M. G. Torres, “Entropy and contrast enhancement of infrared thermal images using the multiscale top-hat transform,” Entropy, vol. 21, no. 3, pp. 1–19, 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 irpan pardosi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---