Klasifikasi Helpdesk Menggunakan Metode K-Nearest Neighbor dan TF-ABS
DOI:
https://doi.org/10.33633/tc.v20i4.5094Keywords:
Helpdesk, Klasifikasi, KNN, Pembobotan, TF-ABSAbstract
Helpdesk merupakan aplikasi yang bermanfaat bagi pengguna nya untuk memperoleh informasi mengenai layanan yang ada pada sebuah perusahaan atau instansi pemerintah. Proses disposisi tiket helpdesk secara manual dapat menimbulkan kesalahan dalam menentukan unit tujuan tiket serta memperpanjang masa penyelesaian tiket karena adanya waktu tunggu untuk mendisposisikan tiket menuju unit yang sesuai. Klasifikasi teks helpdesk sangat diperlukan untuk mendisposisikan tiket secara tepat dan cepat ke unit yang berwenang menangani tiket. Teks helpdesk diklasifikasi ke dalam 8 kategori unit tujuan yaitu Setditjen, Dit.Humas, Dit.PKNSI, Dit.KND, Dit.BMN, Dit.Penilaian, Dit.PNKNL, dan Dit.Lelang. Klasifikasi menggunakan metode K-Nearest Neighbor (KNN) dengan jumlah tetangga terdekat (k) yaitu k=1,3,5,7,9,11,13,15,17,19 serta metode pembobotan TF-ABS untuk proses seleksi fitur. Jumlah fitur yang digunakan untuk klasifikasi sebanyak 5%, 10%, 15%, 20%, 25% dan 30% dari jumlah seluruh dokumen. Akurasi klasifikasi tertinggi sebesar 90,04% diperoleh pada k=3 dan jumlah fitur sebanyak 15%, sedangkan akurasi terendah 84,54% pada k=19 dan jumlah fitur sebanyak 30%. Hasil klasifikasi helpdesk menggunakan KNN dan TF-ABS dapat menghasilkan akurasi cukup baik.References
M. ALTINTA? and A. C. TANTU?, “Machine learning based software development,” vol. 21, no. 3, pp. 33–44, 2014.
T. A. Herawan, Y. H. Chrisnanto, and A. I. Hadiana, “Klasifikasi Helpdesk Universitas Jenderal Achmad Yani Menggunakan Concept Frequency-Inverse Document Frequency (CF-IDF) dan K-Nearest Neighbor,” Pros. SNST, vol. 7, pp. 108–113, 2016.
C. F. Suharno, M. A. Fauzi, and R. S. Perdana, “Klasifikasi Teks Bahasa Indonesia Pada Dokumen Pengaduan Sambat Online Menggunakan Metode K-Nearest Neighbors Dan Chi-square,” Syst. Inf. Syst. Informatics J., vol. 3, no. 1, pp. 25–32, 2017, doi: 10.29080/systemic.v3i1.191.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
M. A. Kurniawan, Y. Sibaroni, and K. L. Muslim, “Kategorisasi Berita Menggunakan Metode Pembobotan TF.ABS dan TF.CHI,” Indones. J. Comput., vol. 3, no. 2, p. 83, 2018, doi: 10.21108/indojc.2018.3.2.236.
V. C. Gandhi and J. A. Prajapati, “Review on Comparison between Text Classification Algorithms,” Int. J. Emerg. Trends Technol. Comput. Sci., vol. 1, no. 3, pp. 1–4, 2012.
A. H. Aliwy and E. H. A. Ameer, “Comparative study of five text classification algorithms with their improvements,” Int. J. Appl. Eng. Res., vol. 12, no. 14, pp. 4309–4319, 2017, doi: 10.113/J.0973-4562.
M. A. Rosid, A. S. Fitrani, I. Ratna, and I. Astutik, “Improving Text Preprocessing For Student Complaint Document Classification Using Sastrawi,” 2020, doi: 10.1088/1757-899X/874/1/012017.
L. A. Matsunaga and N. F. F. Ebecken, “Two Novel Weighting for Text Categorization,” in Data Mining IX - Data Mining, Protection, Detection and other Security Technologies, IX., A. Zanasi, D. Almorza Gomar, N. F. . Ebecken, and C. . Brebbia, Eds. Rio de Janeiro, Brazil: WITPRESS, 2008, pp. 105–114.
J. Li et al., “Feature selection: A data perspective,” ACM Comput. Surv., vol. 50, no. 6, 2017, doi: 10.1145/3136625.
P. Bafna, D. Pramod, and A. Vaidya, “Document clustering: TF-IDF approach,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, no. March 2016, pp. 61–66, 2016, doi: 10.1109/ICEEOT.2016.7754750.
J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques - third edition. 2012.
D. Yuliana and C. Supriyanto, “Klasifikasi Teks Pengaduan Masyarakat Dengan Menggunakan Algoritma Neural Network,” UPI YPTK J. KomTekInfo, vol. 5, no. 3, pp. 92–116, 2019.
L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indones. J. Appl. Stat., vol. 2, no. 1, p. 34, 2019, doi: 10.13057/ijas.v2i1.29998.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Muhammad Azis Suprayogi, Riza Adrianti Supono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/