Prediksi Akumulasi Kasus Terkonfirmasi Covid-19 Di Indonesia Menggunakan Support Vector Regression
DOI:
https://doi.org/10.33633/tc.v20i3.5062Keywords:
akumulasi kasus COVID-19, Support Vector Regression, Visualisasi PrediksiAbstract
Indonesia merupakan salah satu negara di dunia yang terdampak parah oleh gelombang kedua COVID-19. Salah satu cara untuk meningkatkan kesadaran masyarakat terhadap wabah penyebaran virus adalah dengan memberikan informasi tentang prediksi kasus baru. Memprediksi akumulasi kasus dalam beberapa hari ke depan juga sangat penting untuk memperkirakan kebutuhan rumah sakit dan membantu pemerintah dalam membuat kebijakan. Di sisi lain, pola kasus gelombang kedua sulit untuk disimulasikan dengan pendekatan regresi tradisional. Penelitian ini berfokus pada pembuatan sistem informasi yang memberikan visualisasi prediksi akumulasi kasus COVID-19 di Indonesia dengan menggunakan Support Vector Regression (SVR). Algoritma pembelajaran ini dipilih karena kinerjanya yang sangat baik untuk menangani prediksi deret waktu. Hasil eksperimen menunjukkan bahwa SVR dapat memprediksi jumlah akumulasi kasus selama 30 hari ke depan dengan akurasi di atas 80%. Model prediksi tersebut kemudian dipasang pada aplikasi berbasis web, dan hasilnya divisualisasikan sesuai dengan data terbaru.References
X. Yang et al., “Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study,” Lancet Respir. Med., vol. 8, no. 5, pp. 475–481, 2020, doi: 10.1016/S2213-2600(20)30079-5.
D. Purwitasari et al., “Time Series Analysis for Understanding Local Policy Impact of COVID-19 Cases in East Java,” 2020.
M. G. Andrade, J. A. Achcar, K. S. Conceição, and N. Ravishanker, “Time Series Regression Models for COVID-19 Deaths,” J. Data Sci., vol. 19, no. 2, pp. 269–292, 2021, doi: 10.6339/21-JDS991.
R. O. Ogundokun and J. B. Awotunde, “Machine learning prediction for covid 19 pandemic in india,” medRxiv, 2020.
P. A. M. B. Henrique, P. H. M. Albuquerque, S. S. D. F. Marcelino, and Y. Peng, “Portfolio selection with support vector regression: multiple kernels comparison,” Int. J. Bus. Intell. Data Min., vol. 18, no. 4, pp. 395–410, 2021, doi: 10.1504/IJBIDM.2021.115476.
G. Lqj, D. Lq, L. Pickering, J. Via, and A. N. S. Apps, “Identifying Factors in COVID-19 AI Case Predictions,” pp. 192–196, 2021.
A. K. Mohammad Masum, S. A. Khushbu, M. Keya, S. Abujar, and S. A. Hossain, “COVID-19 in Bangladesh: A Deeper Outlook into the Forecast with Prediction of Upcoming per Day Cases Using Time Series,” Procedia Comput. Sci., vol. 178, no. 2019, pp. 291–300, 2020, doi: 10.1016/j.procs.2020.11.031.
K. Ramcharan and K. Sornalakshmi, “Prediction of COVID-19 Outbreak Using Machine Learning,” New Trends Comput. Vis. Bio-inspired Comput., no. May, pp. 1265–1274, 2020, doi: 10.1007/978-3-030-41862-5_128.
N. Chintalapudi, G. Battineni, and F. Amenta, “COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach,” J. Microbiol. Immunol. Infect., vol. 53, no. 3, pp. 396–403, 2020, doi: 10.1016/j.jmii.2020.04.004.
A. Widodo, I. Budi, and R. F. Aji, “Prediksi Topik Penelitian Menggunakan Kombinasi Antara,” vol. 2012, no. Snati, pp. 15–16, 2012.
S. J. Taylor and B. Letham, “Forecasting at scale,” Am. Stat., vol. 72, no. 1, pp. 37–45, 2018.
E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard to track COVID-19 in real time,” Lancet Infect. Dis., vol. 20, no. 5, pp. 533–534, May 2020.
B. Doerr, “Analyzing randomized search heuristics via stochastic domination,” Theor. Comput. Sci., vol. 773, pp. 115–137, 2019.
N. Redell, “Shapley Decomposition of R-Squared in Machine Learning Models,” arXiv Prepr. arXiv1908.09718, 2019.
W. Wang and Y. Lu, “Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model,” in IOP conference series: materials science and engineering, 2018, vol. 324, no. 1, p. 12049.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Agus Budi Raharjo, Zahrul Zizki Dinanto, Dwi Sunaryono, Diana Purwitasari

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/