Prediksi Akumulasi Kasus Terkonfirmasi Covid-19 Di Indonesia Menggunakan Support Vector Regression

Authors

  • Agus Budi Raharjo Institut Teknologi Sepuluh Nopember https://orcid.org/0000-0003-1342-8594
  • Zahrul Zizki Dinanto Institut Teknologi Sepuluh Nopember
  • Dwi Sunaryono Institut Teknologi Sepuluh Nopember
  • Diana Purwitasari Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.33633/tc.v20i3.5062

Keywords:

akumulasi kasus COVID-19, Support Vector Regression, Visualisasi Prediksi

Abstract

Indonesia merupakan salah satu negara di dunia yang terdampak parah oleh gelombang kedua COVID-19. Salah satu cara untuk meningkatkan kesadaran masyarakat terhadap wabah penyebaran virus adalah dengan memberikan informasi tentang prediksi kasus baru. Memprediksi akumulasi kasus dalam beberapa hari ke depan juga sangat penting untuk memperkirakan kebutuhan rumah sakit dan membantu pemerintah dalam membuat kebijakan. Di sisi lain, pola kasus gelombang kedua sulit untuk disimulasikan dengan pendekatan regresi tradisional. Penelitian ini berfokus pada pembuatan sistem informasi yang memberikan visualisasi prediksi akumulasi kasus COVID-19 di Indonesia dengan menggunakan Support Vector Regression (SVR). Algoritma pembelajaran ini dipilih karena kinerjanya yang sangat baik untuk menangani prediksi deret waktu. Hasil eksperimen menunjukkan bahwa SVR dapat memprediksi jumlah akumulasi kasus selama 30 hari ke depan dengan akurasi di atas 80%. Model prediksi tersebut kemudian dipasang pada aplikasi berbasis web, dan hasilnya divisualisasikan sesuai dengan data terbaru.

References

X. Yang et al., “Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study,” Lancet Respir. Med., vol. 8, no. 5, pp. 475–481, 2020, doi: 10.1016/S2213-2600(20)30079-5.

D. Purwitasari et al., “Time Series Analysis for Understanding Local Policy Impact of COVID-19 Cases in East Java,” 2020.

M. G. Andrade, J. A. Achcar, K. S. Conceição, and N. Ravishanker, “Time Series Regression Models for COVID-19 Deaths,” J. Data Sci., vol. 19, no. 2, pp. 269–292, 2021, doi: 10.6339/21-JDS991.

R. O. Ogundokun and J. B. Awotunde, “Machine learning prediction for covid 19 pandemic in india,” medRxiv, 2020.

P. A. M. B. Henrique, P. H. M. Albuquerque, S. S. D. F. Marcelino, and Y. Peng, “Portfolio selection with support vector regression: multiple kernels comparison,” Int. J. Bus. Intell. Data Min., vol. 18, no. 4, pp. 395–410, 2021, doi: 10.1504/IJBIDM.2021.115476.

G. Lqj, D. Lq, L. Pickering, J. Via, and A. N. S. Apps, “Identifying Factors in COVID-19 AI Case Predictions,” pp. 192–196, 2021.

A. K. Mohammad Masum, S. A. Khushbu, M. Keya, S. Abujar, and S. A. Hossain, “COVID-19 in Bangladesh: A Deeper Outlook into the Forecast with Prediction of Upcoming per Day Cases Using Time Series,” Procedia Comput. Sci., vol. 178, no. 2019, pp. 291–300, 2020, doi: 10.1016/j.procs.2020.11.031.

K. Ramcharan and K. Sornalakshmi, “Prediction of COVID-19 Outbreak Using Machine Learning,” New Trends Comput. Vis. Bio-inspired Comput., no. May, pp. 1265–1274, 2020, doi: 10.1007/978-3-030-41862-5_128.

N. Chintalapudi, G. Battineni, and F. Amenta, “COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach,” J. Microbiol. Immunol. Infect., vol. 53, no. 3, pp. 396–403, 2020, doi: 10.1016/j.jmii.2020.04.004.

A. Widodo, I. Budi, and R. F. Aji, “Prediksi Topik Penelitian Menggunakan Kombinasi Antara,” vol. 2012, no. Snati, pp. 15–16, 2012.

S. J. Taylor and B. Letham, “Forecasting at scale,” Am. Stat., vol. 72, no. 1, pp. 37–45, 2018.

E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard to track COVID-19 in real time,” Lancet Infect. Dis., vol. 20, no. 5, pp. 533–534, May 2020.

B. Doerr, “Analyzing randomized search heuristics via stochastic domination,” Theor. Comput. Sci., vol. 773, pp. 115–137, 2019.

N. Redell, “Shapley Decomposition of R-Squared in Machine Learning Models,” arXiv Prepr. arXiv1908.09718, 2019.

W. Wang and Y. Lu, “Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model,” in IOP conference series: materials science and engineering, 2018, vol. 324, no. 1, p. 12049.

Downloads

Published

2021-08-28