Deteksi dan Estimasi Kecepatan Kendaraan dalam Sistem Pengawasan Lalu Lintas Menggunakan Pengolahan Citra
DOI:
https://doi.org/10.33633/tc.v20i3.4588Keywords:
deteksi, kecepatan, kendaraan, haar cascade classifier, radar speed designAbstract
Deteksi objek berbasis pengolahan citra digital pada kendaraan sangat penting untuk diterapkan dalam membangun sistem pengawasan atau sebagai metode alternatif dalam mengumpulkan data statistik untuk pengambilan keputusan rekaya lalu lintas yang efisien. Pada penilitian ini, dibuat sistem deteksi kendaraan berbasis video lalu lintas untuk jenis kendaraan tertentu dengan menggunakan Haar Cascade Classifier dan estimasi kecepatan kendaraan dilakukan dengan menghitung perbedaan waktu pada Region of Interest (ROI) yang telah ditentukan dan hasilnya akan ditampilkan pada Radar Speed Design. Pengujian dilakukan dengan 5 video pengujian. Hasil yang didapatkan dari deteksi kendaraan yaitu nilai rata-rata recall 0.988 dan presisi 0.97 dan dari perhitungan kecepatan didapatkan nilai Mean Squared Error (MSE) yaitu 0,6.References
S. Jeng, W. Chieng, and H. Lu, “Estimating Speed Using a Side-Looking Single-Radar Vehicle Detector,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 2, pp. 607–614, 2014.
P. K. Thadagoppula and V. Upadhyaya, “Speed detection using image processing,” Int. Conf. Comput. Control. Informatics its Appl., pp. 11–16, 2016, doi: 10.1109/IC3INA.2016.7863015.
C. Y. Ho, H. Y. Lin, and L. T. Wu, “Intelligent speed bump system with dynamic license plate recognition,” IEEE Int. Conf. Ind. Technol., pp. 1669–1674, 2016, doi: 10.1109/ICIT.2016.7475013.
L. E. Y. Mimbela, “A Summary of Vehicle Detection and Surveillance Technologies used in Intelligent Transportation Systems,” Fed. Highw. Adm. Intell. Transp. Syst. Progr. Off., 2007.
J. Damsere-Derry, R. Lumor, S. Bawa, and D. Tikoli, “Effects of Traffic Calming Measures on Mobility, Road Safety and Pavement Conditions on Abuakwa-Bibiani Highway,” Front. Sustain. Cities, vol. 2, no. June, pp. 1–9, 2020, doi: 10.3389/frsc.2020.00026.
N. Buch, S. A. Velastin, and J. Orwell, “A review of computer vision techniques for the analysis of urban traffic,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 3, pp. 920–939, 2011, doi: 10.1109/TITS.2011.2119372.
Carmanah Technologies Corp., “Radar Speed Signs Top Traffic Calming List,” Traffic Calming & Vision Zero, 2019. https://carmanah.com/articles/radar-speed-signs-top-traffic-calming-list/ (accessed Jan. 04, 2021).
M. Li, A. Faghri, and R. Fan, “Determining Ideal Locations for Radar Speed Signs for Maximum Effectiveness: A Review of the Literature,” Dep. Civ. Environ. Eng. Univ. Delaware, 2017.
L. Radarsign, “How Effective are Radar Speed Signs? | radarsign.com.” https://www.radarsign.com/how-effective-are-radar-speed-signs/ (accessed Jan. 06, 2021).
A. Varghese and G. Sreelekha, “Background Subtraction for Vehicle Detection,” Glob. Conf. Commun. Technol., pp. 380–382, 2015, doi: 10.1109/GCCT.2015.7342688.
R. A. Yuha and M. Harahap, “Deteksi Gerakan pada Kamera CCTV dengan Algoritma Frame Difference dan Frame Substraction,” Semin. Nas. Teknol. Inf. dan Komun., pp. 503–511, 2019.
Q. Wu, W. Kang, and X. Zhuang, “Real-time vehicle detection with foreground-based cascade classifier,” IET Image Process., vol. 10, no. 4, pp. 289–296, 2016, doi: 10.1049/iet-ipr.2015.0333.
P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, pp. 511–518, 2001, doi: 10.1109/CVPR.2001.990517.
D. K. Ulfa and D. H. Widyantoro, “Pelaksanaan Haar Cascade Classifier untuk Deteksi Motorcycle,” IEEE Int. Conf. Cybern. Comput. Intell., 2017.
S. Choudhury, S. P. Chattopadhyay, and T. K. Hazra, “Vehicle Detection and Counting using Haar Feature- Based Classifier,” 8th Annu. Ind. Autom. Electromechanical Eng. Conf., pp. 106–109, 2017.
M. Zulfikri, E. Yudaningtyas, K. Kendaraan, H. Cascade, and J. Teknologi, “Sistem Penegakan Speed Bump Berdasarkan Kecepatan Kendaraan yang Diklasifikasikan Haar Cascade Classifier,” J. Teknol. dan Sist. Inf., vol. 7, no. 1, pp. 12–18, 2019, doi: 10.14710/jtsiskom.7.1.2019.12-18.
D. Jomaa, S. Yella, and M. Dougherty, “A Comparative Study between Vehicle Activated Signs and Speed Indicator Devices,” Transp. Res. Procedia, vol. 22, no. 2016, pp. 115–123, 2017, doi: 10.1016/j.trpro.2017.03.017.
A. Ullah, S. Hussain, A. Wasim, and M. Jahanzaib, “Usage and impacts of speed humps on vehicles: A review,” J. Adv. Rev. Sci. Res. J. homepage, vol. 28, no. 1, pp. 1–17, 2016, [Online]. Available: www.akademiabaru.com/arsr.html.
A. Khan, D. M. S. Z. Sarker, and S. Rayamajhi, “Speed Estimation of Vehicle in Intelligent Traffic Surveillance System Using Video Image Processing,” Int. J. Sci. Eng. Res., vol. 5, no. 12, pp. 1384–1390, 2014, doi: 10.14299/ijser.2014.12.003.
H. J. Kim, “Vehicle detection and speed estimation for automated traffic surveillance systems at nighttime,” Tech. Gaz., vol. 26, no. 1, pp. 87–94, 2019, doi: 10.17559/TV-20170827091448.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Muhammad Zulfikri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/