Ekstraksi Fitur Produktivitas Dinamis berdasarkan Topik Artikel Ilmiah untuk Klasterisasi Peneliti
DOI:
https://doi.org/10.33633/tc.v20i2.4512Keywords:
Klasterisasi peneliti, Produktivitas, Topik Artikel Ilmiah, Publikasi, SitasiAbstract
Pengelompokkan peneliti seringkali menggunakan informasi tekstual yang terdapat pada artikel ilmiah peneliti, contohnya judul, abstrak, dan kata kunci sehingga menghasilkan kelompok peneliti dengan kemiripan informasi tekstual pada artikel ilmiah mereka. Pengelompokkan peneliti juga seringkali menggunakan jumlah publikasi dan sitasi sehingga menghasilkan kelompok peneliti yang memiliki jumlah publikasi dan sitasi yang cenderung sama. Berdasarkaan kedua metode di atas, penelitian ini mencoba untuk menganalisis penggunaan topik artikel ilmiah pada proses ekstraksi fitur produktivitas. Fitur ini merupakan fitur yang didapatkan melalui penghitungan kinerja peneliti berdasarkan jumlah publikasi dan sitasi. Hasil ekstraksi fitur akan digunakan untuk klasterisasi peneliti menggunakan metode K-Means++. Sebelum data peneliti diklasterisasi, terlebih dahulu data peneliti dianalisis untuk menghilangkan kemungkinan adanya outlier. Evaluasi hasil klaster dilakukan dengan mempertimbangkan nilai Sum Squared Error dan Silhouette. Hasilnya, klaster optimal didapatkan dengan nilai K sama dengan 8 dan nilai silhouette sama dengan 0.15396. Kemudian, hasil klaster dianalisis untuk dapat memberikan label terhadap masing-masing klaster dengan mempertimbangkan topik artikel ilmiah, jumlah publikasi dan jumlah sitasi.References
F. Xia, Z. Chen, W. Wang, J. Li, and L. T. Yang, “MVCWalker: Random walk-based most valuable collaborators recommendation exploiting academic factors,” IEEE Trans. Emerg. Top. Comput., vol. 2, no. 3, pp. 364–375, 2014, doi: 10.1109/TETC.2014.2356505.
D. Purwitasari, C. Fatichah, I. K. E. Purnama, S. Sumpeno, and M. H. Purnomo, “Inter-departmental research collaboration recommender system based on content filtering in a cold start problem,” 2017 IEEE 10th Int. Work. Comput. Intell. Appl. IWCIA 2017 - Proc., vol. 2017-Decem, pp. 177–184, 2017, doi: 10.1109/IWCIA.2017.8203581.
M. Ochsner, S. E. Hug, and H. D. Daniel, “Setting the stage for the assessment of research quality in the humanities. Consolidating the results of four empirical studies,” Zeitschrift fur Erziehungswiss., vol. 17, no. 6, pp. 111–132, 2014, doi: 10.1007/s11618-014-0576-4.
P. O. Seglen, “Why the impact factor of journals should not be used for evaluating research,” Br. Med. J., vol. 314, no. 7079, pp. 497–497, 1997, doi: 10.1136/bmj.314.7079.497.
J. E. Hirsch, “An index to quantify an individual’s scientific research output,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 46, pp. 16569–16572, 2005, doi: 10.1073/pnas.0507655102.
T. Y. Alkan, M. Gunay, and F. Ozbek, “Clustering of Scientist using Research Areas at Akdeniz University,” UBMK 2019 - Proceedings, 4th Int. Conf. Comput. Sci. Eng., pp. 580–584, 2019, doi: 10.1109/UBMK.2019.8907236.
D. Yu, W. Wang, S. Zhang, W. Zhang, and R. Liu, “Hybrid self-optimized clustering model based on citation links and textual features to detect research topics,” PLoS One, vol. 12, no. 10, pp. 1–21, 2017, doi: 10.1371/journal.pone.0187164.
G. Panagopoulos, G. Tsatsaronis, and I. Varlamis, “Detecting rising stars in dynamic collaborative networks,” J. Informetr., vol. 11, no. 1, pp. 198–222, 2017, doi: 10.1016/j.joi.2016.11.003.
H. Ma’rifah, A. P. Wibawa, and M. I. Akbar, “Klasifikasi Artikel Ilmiah Dengan Berbagai Skenario Preprocessing,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 2, no. 2, p. 70, 2020, doi: 10.30872/jsakti.v2i2.2681.
A. M. Rukmi and I. M. Iqbal, “Using k-means++ algorithm for researchers clustering,” AIP Conf. Proc., vol. 1867, no. August, 2017, doi: 10.1063/1.4994455.
D. Purwitasari, C. Fatichah, S. Sumpeno, and M. H. Purnomo, “Ekstraksi Ciri Produktivitas Dinamis untuk Prediksi Topik Pakar dengan Model Discrete Choice,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 7, no. 4, pp. 418–426, 2018, doi: 10.22146/jnteti.v7i4.460.
P. M. Prihatini, I. K. Suryawan, and I. N. Mandia, “Metode Latent Dirichlet Allocation untuk Ekstraksi Topik Dokumen,” J. Log., vol. 17, no. 3, pp. 154–158, 2017, doi: 10.31940/logic.v17i3.604.
D. Zhang, T. Luo, and D. Wang, “Learning from LDA using deep neural networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10102, pp. 657–664, 2016, doi: 10.1007/978-3-319-50496-4_59.
Y. Li and H. Wu, “A Clustering Method Based on K-Means Algorithm,” Phys. Procedia, vol. 25, pp. 1104–1109, 2012, doi: 10.1016/j.phpro.2012.03.206.
A. Barai (Deb) and L. Dey, “Outlier Detection and Removal Algorithm in K-Means and Hierarchical Clustering,” World J. Comput. Appl. Technol., vol. 5, no. 2, pp. 24–29, 2017, doi: 10.13189/wjcat.2017.050202.
R. Nainggolan, R. Perangin-Angin, E. Simarmata, and A. F. Tarigan, “Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method,” J. Phys. Conf. Ser., vol. 1361, no. 1, 2019, doi: 10.1088/1742-6596/1361/1/012015.
F. Wang, H. H. Franco-Penya, J. D. Kelleher, J. Pugh, and R. Ross, “An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10358 LNAI, no. July, pp. 291–305, 2017, doi: 10.1007/978-3-319-62416-7_21.
A. R. Mamat, F. S. Mohamed, M. A. Mohamed, N. M. Rawi, and M. I. Awang, “Silhouette index for determining optimal k-means clustering on images in different color models,” Int. J. Eng. Technol., vol. 7, pp. 105–109, 2018, doi: 10.14419/ijet.v7i2.14.11464.
M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018, doi: 10.1088/1757-899X/336/1/012017.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Diana Purwitasari
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---