Analisis Perbandingan Efektivitas Pra-Pengolahan Terhadap Reka Bentuk Sidik Jari Menggunakan Estimasi Orientasi
DOI:
https://doi.org/10.33633/tc.v20i2.4329Keywords:
Fingerprint, Orientation Field Estimation, Pre-ProcessingAbstract
Estimasi orientasi merupakan suatu langkah penting dalam berbagai proses reka bentuk citra sidik jari, termasuk perbaikan dan klasifikasi sidik jari. Pada berbagai metode pengolahan citra sidik jari sebelum dilakukan langkah estimasi orientasi seringkali didahului oleh berbagai langkah pra-pengolahan. Berbagai langkah pra-pengolahan tersebut sedikit banyak memiliki pengaruh terhadap kualitas hasil estimasi orientasi. Untuk menguji pengaruh dari berbagai kombinasi pra-pengolahan tersebut akan digunakan perangkat lunak yang dibangun untuk penelitian ini. Perangkat lunak yang dihasilkan pada penelitian ini adalah suatu perangkat lunak yang mampu melakukan kombinasi pra-pengolahan dari tiga jenis pra-pengolahan yang umum dipakai, yaitu normalisasi, segmentasi, dan penghapusan derau, dan kemudian mampu melakukan estimasi orientasi, sehingga dapat dianalisis efektivitas masing-masing kombinasi pra-pengolahan terhadap estimasi orientasi. Dengan demikian dapat diketahui kombinasi pra-pengolahan manakah yang paling efekif untuk melakukan reka bentuk sidik jari menggunakan estimasi orientasi.References
H. Fahmi, “PEMANFAATAN DATA SIDIK JARI PADA E-KTP GUNA MENGUNGKAP PELAKU TINDAK PIDANA,” J. Leg. Policy Stud., vol. 01, no. 03, 2018.
A. Rudiyanto, “Fungsi Sidik Jari Pelaku Tindak Pidana Pembunuhan (Studi Kasus Di Polres Tegal),” J. Huk. Khaira Ummah, vol. 12, no. 04, pp. 927–932, 2017.
N. Wijaya, “Application of Gost Algorithm For The Safety of Data Sending of General Election,” Elkawnie, vol. 06, no. 01, pp. 121–132, 2020.
A. Julianto, D. Danuri, and A. Tedyyana, “Rancang Bangun Aplikasi Presensi Guru Sekolah Menggunakan Sidik Jari Dan Raspberry Pi,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 10, no. 01, pp. 54–63, 2019.
L. Listyalina, I. Mustiadi, and D. A. Dharmawan, “DETEKSI BIDANG ORIENTASI PADA CITRA SIDIK JARI,” in Seminar Nasional Multidisiplin Ilmu, 2019, pp. 43–48.
S. Liu, M. Liu, and Z. Yang, “Sparse coding based orientation estimation for latent fingerprints,” Pattern Recognit., vol. 67, pp. 164–176, 2017.
S. Dyre and C. P. Sumathi, “RELIABLE ORIENTATION FIELD ESTIMATION OF FINGERPRINT BASED ON ADAPTIVE NEIGHBORHOOD ANALYSIS,” ICTACT J. Image Video Process., vol. 07, no. 03, pp. 1456–1462, 2017.
J. Li, J. Feng, and C.-C. J. Kuo, “Deep convolutional neural network for latent fingerprint enhancement,” Signal Process. Image Commun., vol. 60, pp. 52–63, 2018.
Z. Qu, J. Liu, Y. Liu, Q. Guan, C. Yang, and Y. Zhang, “Orienet: A regression system for latent fingerprint orientation field extraction,” in International Conference on Artificial Neural Networks, 2018, pp. 436–446.
A. Manickam et al., “Bio-medical and latent fingerprint enhancement and matching using advanced scalable soft computing models,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 10, pp. 3983–3995, 2019.
H. K. Sanjaya and N. Wijaya, “Klasifikasi Jenis Pisang Menggunakan Support Vector Machine dengan Fitur GLCM dan HOG,” Indones. J. Comput. Sci., vol. 09, no. 02, pp. 129–143, 2020.
P. Schuch, S. Schulz, and C. Busch, “Survey on the impact of fingerprint image enhancement,” IET Biometrics, vol. 07, no. 02, pp. 102–115, 2017.
T. Arifianto, “Penerapan Fingerprint Recognition Dengan Metode Learning Vector Quantization (LVQ) dalam Automatic Teller Machine (ATM),” J. Spirit, vol. 09, no. 02, pp. 8–13, 2018.
N. Wijaya, “Capital Letter Pattern Recognition in Text to Speech by Way of Perceptron Algorithm,” Knowl. Eng. Data Sci., vol. 1, no. 1, pp. 26–32, 2018.
A. Fanggidae, D. M. Sihotang, R. Pati, and A. Putra, “Recognition Of Fingerprint Patterns With Local Binary Pattern Method And Learning Vector Quantization,” J. Komput. dan Inform., vol. 07, no. 02, pp. 148–156, 2019.
A. Hardianti, “Segmentasi Citra Bentuk dan Rangka Tubuh Manusia dengan Menggunakan Metode Median Filter dan Thinning,” Rekayasa Inf., vol. 06, no. 02, pp. 39–44, 2017.
C. M. Ahmed et al., “Noiseprint: Attack detection using sensor and process noise fingerprint in cyber physical systems,” in Proceedings of the 2018 on Asia Conference on Computer and Communications Security, 2018, pp. 483–497.
L. F. Damayanti, “Analisa & Perancangan Aplikasi Transaksi Elektronik Menggunakan Fingerprint,” in SNIA (Seminar Nasional Informatika dan Aplikasinya), 2019, pp. 43–46.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Novan Wijaya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/