Convolutional Neural Network untuk Metode Klasifikasi Multi-Label pada Motif Batik
DOI:
https://doi.org/10.33633/tc.v20i1.4224Keywords:
klasifikasi multi-label, convolutional neural network, pengolahan citra, motif batikAbstract
Salah satu warisan budaya Indonesia yang diakui dunia adalah kain batik. Beragamnya motif batik di Indonesia membuat masyarakat awam sulit membedakan motif-motif yang ada. Penelitian ini menggunakan convolutional neural network (CNN) dalam melakukan klasifikasi multi-label citra motif batik. CNN merupakan salah satu algoritma deep learning pengembangan multi-layer perceptron (MLP) yang telah banyak digunakan dalam klasifikasi data, khususnya klasifikasi citra. Hasil penelitian menunjukkan akurasi penggunaan arsitektur CNN dalam melakukan klasifikasi multi-label pada 15 motif batik mencapai 91.41% dengan penggunaan epoch 100.References
A. S. Hamidin, Batik Warisan Budaya Asli Indonesia, Yogyakarta: Narasi, 2010.
J. Achjadi, The Glory of Batik: The Danar Hadi Collection, 1st Ed., Solo, Central Java: PT. BATIK DANAR HADI, 2011.
H. S. Doellah, Batik : the impact of time and environment, Solo: Danar Hadi, 2002.
M. Ediwati, "Motif Batik Tulis Kreasi Baru Produksi Batik Merak Manis di Surakarta (Sebuah Tinjauan Estetika )," Universitas Sebelas Maret, Surakarta, 2007.
Iskandar and E. Kustiyah, "Batik sebagai Identitas Kultural Bangsa Indonesia di Era Globalisasi," GEMA, vol. 52, pp. 2456-2472, 2017.
K. S. A. K. Yohannes, "Deteksi Penyakit Malaria Menggunakan Convolutional Neural Network Berbasis Saliency," JUITA: Jurnal Informatika, vol. 8, no. 1, pp. 37-44, 2020.
I. W. S. Eka Putra, A. Y. Wijaya and R. Soelaiman, "Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101," JURNAL TEKNIK ITS, vol. 5, no. 1, pp. 65-69, 2016.
A. Rohim, Y. A. Sari and Tibyani, "Convolution Neural Network (CNN) Untuk Pengklasifikasian Citra Makanan Tradisional," JPTIIK (Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer), vol. 3, no. 7, pp. 7037-7042, 2019.
E. N. Arrofiqoh and Harintaka, "IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TANAMAN PADA CITRA RESOLUSI TINGGI," GEOMATIKA, vol. 24, no. 2, pp. 61-68, 2018.
S. F. ALAMSYAH, "IMPLEMENTASI DEEP LEARNING UNTUK KLASIFIKASI TANAMAN TOGA BERDASARKAN CIRI DAUN BERBASIS ANDROID," Ubiquitous: Computers and its Applications Journal, vol. 2, no. 2, pp. 113-122, 2019.
S. A. Shahriyar, K. M. R. Alam, S. S. Roy and Y. Morimoto, "An Approach for Multi Label Image Classification Using Single Label Convolutional Neural Network," in 21st International Conference of Computer and Information Technology (ICCIT), Bangladesh, 2018.
C. K. Dewa, A. L. Fadhilah and A. Afiahayati, "Convolutional Neural Networks for Handwritten Javanese Character Recognition," IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 12, no. 1, pp. 83-94, 2018.
S. C. A. Pradhana, U. N. Wisesty and F. Sthevanie, "Pengenalan Aksara Jawa dengan Menggunakan Algoritma Convolutional Neural Network," in e-Proceeding of Engineering, Bandung, 2020.
E. N. Arrofiqoh and Harintaka, "Implementasi Metode Convolutional Neural Network untuk Klasifikasi Tanaman pada Citra Resolusi Tinggi," GEOMATIKA, vol. 24, no. 2, pp. 61-68, 2018.
N. H. Harani, C. Prianto and M. Hasanah, "Deteksi Objek Dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Python," Jurnal Teknik Informatika, vol. 11, no. 3, pp. 47-53, 2019.
B. Bhushan, S. Singh and R. Singla, "License Plate Recognition System using Neural Networks and Multi-thresholding Technique," International Journal of Computer Applications, vol. 84, no. 5, pp. 45-50, 2013.
D. Avianto, "PENGENALAN POLA KARAKTER PLAT NOMOR KENDARAAN MENGGUNAKAN ALGORITMA MOMENTUM BACKPROPAGATION NEURAL NETWORK," JIFO: Jurnal Informatika, vol. 10, no. 1, pp. 1199-1209, 2016.
K. N. Susanto, K. Gunadi and E. Setyati, "Pengenalan Karakter pada Plat Nomor Indonesia dengan Tilt Correction dan Metode Faster R-CNN," Jurnal INFRA, vol. 7, no. 1, 2019.
M. N. Fuad and N. Suciati, "Klasifikasi Multi Label," JUTI, 2018.
G. Tsoumakas, I. Katakis and I. Vlahavas, "Mining Multi-label Data," in Data Mining and Knowledge Discovery Handbook. , Boston, MA., Springer, 2009, pp. 667-685.
G. Lemaître, F. Nogueira and C. K. Aridas, "Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning," Journal of Machine Learning Research, vol. 18, pp. 1-5, 2017.
M. A. Tahir, J. Kittler, K. Mikolajczyk and F. Yan, "Improving Multilabel Classi?cation Performance by Using Ensemble of Multi-label Classi?ers," in Multiple Classifier Systems, 9th International Workshop, MCS 2010, Cairo, Egypt, 2010.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Taufiqotul Bariyah, Mohammad Arif Rasyidi, Ngatini Ngatini

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/