Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan Pembangunan Desa

Authors

  • Saiful Ulya Universitas Muhammadiyah Kudus
  • M Arief Soeleman Dian Nuswantoro University
  • Fikri Budiman Dian Nuswantoro University

DOI:

https://doi.org/10.33633/tc.v20i1.4215

Keywords:

Data Mining, Klasifikasi, k-Nearest Neighbors, Algoritma Genetika, Optimize Parameter.

Abstract

Klasifikasi adalah proses menemukan model atau fungsi yang menggambarkan dan membedakan kelas atau konsep data. Algoritma k-NN (k Nearest Neighbors) merupakan algoritma klasifikasi berdasarkan pembelajaran dari data yang sudah terklasifiasi sebelumnya. Algoritma k-NN (k Nearest Neighbors) merupakan algoritma yang sangat bagus dalam menangani beberapa kasus, salah satu kelebihan k-NN diantaranya adalah tangguh terhadap data training yang noisy dan sangat efektif apabila data trainingnya besar. Namun terdapat beberapa masalah pada algoritma k-NN diantaranya adalah penentuan nilai k untuk pemilihan jumlah tetangga terdekatnya sangat sulit, karena nilai k sangat peka atau sensitif terhadap hasil klasifikasi. Pada penelitian ini, akan dilakukan pemodelan klasifiasi dengan menggunakan algoritma k-NN yang difokuskan pada proses penentuan nilai k terbaik pada dataset IKG (Indeks Kesulitas Geografis) desa. Pada penelitian ini akan melakukan integrasi algoritma k-NN dengan menentukan nilai k optimal dengan optimize parameters berdasar algoritma genetika.

References

J. Han, M. Kamber, and J. Pei, Introduction. 2012.

C. Insight, “Dean - Big Data and Data Mining - 2015.”

Z. Qin, A. T. Wang, C. Zhang, and S. Zhang, “Cost-Sensitive Classification with k-Nearest Neighbors,” pp. 112–131, 2013.

M. Zong, S. Zhang, Y. Zhu, Z. Deng, and D. Cheng, “kNN Algorithm with Data-Driven k Value,” pp. 499–512, 2014.

S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, “Efficient kNN classification with different numbers of nearest neighbors,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 5, pp. 1774–1785, 2018.

S. Zhang, D. Cheng, Z. Deng, M. Zong, and X. Deng, “A novel kNN algorithm with data-driven k parameter computation,” Pattern Recognit. Lett., vol. 109, pp. 44–54, 2018.

S. Zhang, “Nearest neighbor selection for iteratively kNN imputation,” J. Syst. Softw., vol. 85, no. 11, pp. 2541–2552, 2012.

J. Zierath, R. Rachholz, C. Woernle, and A. Müller, Load Calculation on Wind Turbines: Validation of Flex5, Alaska/Wind, MSC.Adams and SIMPACK by Means of Field Tests. 2014.

S. Zhang, X. Wu, and M. Zhu, “Efficient missing data imputation for supervised learning,” Proc. 9th IEEE Int. Conf. Cogn. Informatics, ICCI 2010, pp. 672–679, 2010.

U. Lall and A. Sharma, “A nearest neighbor bootstrap for resampling hydrologic time series,” Water Resour. Res., vol. 32, no. 3, pp. 679–693, 1996.

M. STIT, N. Kusuma, and E. Purwanti, “Village Index Analysis Building to Know The Village Development In Gadingrejo District of Pringsewu District,” Inov. Pembang. J. Kelitbangan, vol. 6, no. 02, pp. 179–190, 2018.

D. A. N. Transmigrasi, “Indeks desa membangun.”

H. Harafani, S. Tinggi, M. Informatika, D. Komputer, N. Mandiri, and R. S. Wahono, “Optimasi Parameter pada Support Vector Machine Berbasis Algoritma Genetika untuk Estimasi Kebakaran Hutan,” J. Intell. Syst., vol. 1, no. 2, 2015.

N. Harish, S. Mandal, S. Rao, and S. G. Patil, “Particle Swarm Optimization based support vector machine for damage level prediction of non-reshaped berm breakwater,” Appl. Soft Comput. J., vol. 27, pp. 313–321, 2015.

L. I. Kuncheva, “Fitness functions in editing k-NN reference set by genetic algorithms,” Pattern Recognit., vol. 30, no. 6, pp. 1041–1049, 1997.

N. Suguna and K. Thanushkodi, “An Improved k-Nearest Neighbor Classification Using Genetic Algorithm,” Int. J. Comput. Sci. Issues, vol. 7, no. 4, pp. 18–21, 2010.

M. North, Data Mining for the Masses. 2012.

Z. E. Rasjid and R. Setiawan, “Performance Comparison and Optimization of Text Document Classification using k-NN and Naïve Bayes Classification Techniques,” Procedia Comput. Sci., vol. 116, pp. 107–112, 2017.

H. Harafani, T. Informatika, S. Nusa, and M. Jakarta, “OPTIMASI ALGORITMA GENETIKA PADA K-NN UNTUK MEMPREDIKSI KECENDERUNGAN ‘BLOG POSTING,’” J. Pendidik. Teknol. dan Kejuru., vol. 15, no. 1, p. 20, 2018.

B. W. Silverman and M. C. Jones, “Estimation Discriminant Analysis Nonparametric Density,” vol. 57, no. 3, pp. 233–238, 2014.

P. Bhuvaneswari and A. B. Therese, “Detection of Cancer in Lung with K-NN Classification Using Genetic Algorithm,” Procedia Mater. Sci., vol. 10, no. Cnt 2014, pp. 433–440, 2015.

T. Wakahara and Y. Yamashita, “K-NN classification of handwritten characters via accelerated GAT correlation,” Pattern Recognit., vol. 47, no. 3, pp. 994–1001, 2014.

Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang, “Efficient kNN classification algorithm for big data,” Neurocomputing, vol. 195, pp. 143–148, 2016.

X.-S. Yang, “Chapter 2 - Analysis of Algorithms,” pp. 23–44, 2014.

Gorunescu, F. (2011). Intelligent Systems Reference Library. (Gorunescu, Ed)..

L. H. Randy and E. H. Sue, “Practical genetic algorithms,” New York Wiley Sons, Inc, vol. 50, p. 62, 2004.

Downloads

Published

2021-02-09