Prediksi Hipertensi menggunakan Decision Tree, Naïve Bayes dan Artificial Neural Network pada software KNIME
DOI:
https://doi.org/10.33633/tc.v19i4.3872Keywords:
Hipertensi, Decision Tree, Naïve Bayes, Artificial Neural Networks, KNIMEAbstract
Hipertensi merupakan salah satu penyakit tidak menular yang dapat menyebabkan kematian karena meningkatkan resiko munculnya berbagai penyakit seperti gagal ginjal, gagal jantung, bahkan stroke. Resiko hipertensi disebabkan oleh beberapa faktor penyebab seperti usia, keturunan, pola makan dan olahraga, dan merokok. Teknologi artificial intelligence yakni machine learning dimanfaatkan di bidang kesehatan khususnya prediksi penyakit hipertensi. Pada penelitian ini diimplementasi tiga algoritma machine learning yakni decision tree, naïve bayes dan artificial neural networks. Data yang digunakan pada penelitian ini sebanyak 274 data yang diperoleh dari hasil kuesioner dengan 26 pertanyaan, dimana 25 pertanyaan adalah variabel faktor resiko dan satu pertanyaan merupakan kelas yang menyatakan responden memiliki riwayat hipertensi atau tidak. Data diolah menggunakan platform analisis data yakni KNIME. Sebelum data diolah untuk membangun model klasifikasi menggunakan decision tree, naïve bayes dan artificial neural network, data dipraproses terlebih dahulu dengan melakukan imputasi missing value, oversampling dan normalisasi data. Selanjutnya pembagian data menggunakan 5-fold cross validation. Model klasifikasi yang diperoleh dievaluasi menggunakan nilai akurasi, recall dan precision. Hasil evaluasi dari eksperimen yang dilakukan diperoleh bahwa algoritma artificial neural network memiliki tingkat performa lebih baik dibandingkan decision tree dan naïve bayes dengan nilai akurasi sebesar 94.7%, recall sebesar 91.5% dan precision sebesar 97.7%.References
J. Lee, H. Davari, J. Singh, and V. Pandhare, “Industrial Artificial Intelligence for industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 18, pp. 20–23, 2018.
D. Lafreniere, F. Zulkernine, D. Barber, and K. Martin, “Using machine learning to predict hypertension from a clinical dataset,” in 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, 2017.
B. O. Afeni, T. I. Aruleba, and I. A. Oloyede, “Hypertension Prediction System Using Naive Bayes Classifier,” J. Adv. Math. Comput. Sci., pp. 1–11, Sep. 2017.
A. Wang, N. An, G. Chen, L. Li, and G. Alterovitz, “Predicting hypertension without measurement: A non-invasive, questionnaire-based approach,” Expert Syst. Appl., vol. 42, no. 21, pp. 7601–7609, 2015.
I. P. Adebayo, “Idowu Peter Adebayo. Predictive Model for the Classification of Hypertension Risk Using Decision Trees Algorithm,” Am. J. Math. Comput. Model., vol. 2, no. 2, pp. 48–59, 2017.
A. Naik and L. Samant, “Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime,” Procedia Comput. Sci., vol. 85, no. Cms, pp. 662–668, 2016.
S. Dwivedi, P. Kasliwal, and S. Soni, “Comprehensive study of data analytics tools (RapidMiner, Weka, R tool, Knime),” 2016 Symp. Colossal Data Anal. Networking, CDAN 2016, 2016.
R. Samant and S. Rao, “Evaluation of Artificial Neural Networks in Prediction of Essential Hypertension,” Int. J. Comput. Appl., vol. 81, no. 12, pp. 34–38, 2013.
N. Azwanti, E. Elisa, U. P. Batam, and J. R. S. Kuning, “InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Analisis Pola Penyakit Hipertensi Menggunakan Algoritma C4 . 5,” vol. 2, 2019.
Sci-kit-Learn, “Cross-validation: evaluating estimator performance,” 2015. [Online]. Available: http://scikit-learn.org/stable/modules/cross_validation.html.
N. Chamidah, M. M. Santoni, and N. Matondang, “Pengaruh Oversampling pada Klasifikasi Hipertensi dengan Algoritma,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 4, pp. 635–641, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Mayanda Mega Santoni, Nurul Chamidah, Nurhafifah Matondang

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/