Evaluasi Metode Shape Contexts Pada Media Pembelajaran Interaktif Bangun Datar
DOI:
https://doi.org/10.33633/tc.v19i4.3815Keywords:
shape contexts, f-measure, media pembelajaran, bangun datarAbstract
Shape contexts merupakan salah satu metode shape matching. Pada penelitian ini metode ini diterapkan dalam sebuah media pembelajaran bangun datar prasekolah dasar. Hal ini bertujuan untuk menambah unsur interaktif dan terkesan mengandung kecerdasan buatan dalam sebuah media pembelajaran. Metode ini digunakan untuk mengukur persentase inputan coretan tangan pengguna. Inputan pengguna berupa coretan tangan bidang persegi, lingkaran dan segitiga. Apabila presentase inputan pengguna diatas threshold maka dianggap benar. Threshold yang digunakan yaitu > 70 %. Karena masih dalam fase pengembangan maka diperlukan evaluasi terhadap penggunaan metode ini. Evaluasi dilakukan menggunakan metode f-measure. Hasil dari evaluasi dengan metode f-measure mendapatkan nilai rata-rata sebesar 0.43.References
Eskicioglu, A.M. & Kopec, D. (2003). The Ideal Multimedia-Enabled Classroom: Perspectives from Psychology, Education, and Information Science. Journal of Educational Multimedia and Hypermedia, 12(2), 199-221. Norfolk, VA: Association for the Advancement of Computing in Education (AACE).
Arsayd, Azhari., 2009, Media Pembelajarans, PT. RajaGrafindo Persada, Jakarta.
P. S. Ha and M. Shakeri, "License Plate Automatic Recognition based on edge detection," 2016 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, 2016, pp. 170-174, doi: 10.1109/RIOS.2016.7529509.
Rismiyati, Khadijah and A. Nurhadiyatna, "Deep learning for handwritten Javanese character recognition," 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Semarang, 2017, pp. 59-64, doi: 10.1109/ICICOS.2017.8276338.
J. Kronenberger, D. Malysiak and U. Handmann, "Text and character recognition on metal-sheets," 2017 IEEE International Conference on Information and Automation (ICIA), Macau, 2017, pp. 392-397, doi: 10.1109/ICInfA.2017.8078940.
T. Septianto, E. Setyati, and J. Santoso, “Digit Classification of Majapahit Relic Inscription using GLCM-SVM,” vol. 1, no. 2, pp. 46–54, 2018.
Erwin, M. Fachrurrozi, A. Fiqih, B. R. Saputra, R. Algani and A. Primanita, "Content based image retrieval for multi-objects fruits recognition using k-means and k-nearest neighbor," 2017 International Conference on Data and Software Engineering (ICoDSE), Palembang, 2017, pp. 1-6, doi: 10.1109/ICODSE.2017.8285855.
P. P. Nair, A. James and C. Saravanan, "Malayalam handwritten character recognition using convolutional neural network," 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, 2017, pp. 278-281, doi: 10.1109/ICICCT.2017.7975203.
Z. Shokoohi, A. M. Hormat, F. Mahmoudi and H. Badalabadi, "Persian handwritten numeral recognition using Complex Neural Network and non-linear feature extraction," 2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA), Birjand, 2013, pp. 1-5, doi: 10.1109/PRIA.2013.6528447.
M. A. H. Akhand, M. M. Rahman, P. C. Shill, S. Islam and M. M. Hafizur Rahman, "Bangla handwritten numeral recognition using convolutional neural network," 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, 2015, pp. 1-5, doi: 10.1109/ICEEICT.2015.7307467.
Belongie and Malik, "Matching with shape contexts," 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries, Hilton Head Island, SC, USA, 2000, pp. 20-26, doi: 10.1109/IVL.2000.853834.
S. Belongie, J. Malik and J. Puzicha, "Shape matching and object recognition using shape contexts," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509-522, April 2002, doi: 10.1109/34.993558.
T. Septianto, “EVALUASI MEDIA PEMBELAJARAN BERBASIS HYBRID DENGAN USE QUESTIONNAIRE – STUDI KASUS: AYO BELAJAR BANGUN DATAR PRA SD,” in Seminar Pendidikan Nasional SMK Negeri 9 Kota Malang, 2017, vol. 1, pp. 358–367.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Tri Septianto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/