Meta-Algorithms untuk Meningkatkan Kinerja Klasifikasi dalam Keberhasilan Telemarketing Perbankan
DOI:
https://doi.org/10.33633/tc.v19i4.3725Keywords:
telemarketing, meta-algoritms, decission tree, baggingAbstract
Banyak bank dan perusahaan asuransi berinteraksi dengan pelanggan mereka menggunakan jasa telemarketing agar dapat lebih meningkatkan pendapatan bank dan mencapai target. Kompetisi yang ketat di industri perbankan membuat tenaga penjualan bank mengejar target terutama menjelang akhir tahun. Pelaku telemarketing atau biasa disebut telemarketer pada perbankan bertugas menghubungi nasabah potensial yang dilakukan secara berkala melalui sambungan telepon. Namun tidak semua nasabah mendapatkan respons yang positif, sering kali telemarketing menemui antipati dari nasabah sebelum proses komunikasi dilakukan. Pendekatan yang diusulkan untuk menemukan nasabah potensial adalah dengan cara klasifikasi data nasabah menggunakan pembelajaran mesin (machine learning). Penggunaan algoritme pembelajaran yang dilakukan secara tunggal memungkinkan untuk dikembangkan menggunakan meta-algorithms sehingga akan memaksimalkan kinerja klasifikasi dalam memprediksi target pelanggan atau nasabah yang sesuai dengan kebutuhan perusahaan agar tujuan pemasaran tercapai. Berdasarkan hasil penelitian yang diperoleh, tindakan pra-pemrosesan dan penggunaan meta-algorithms seperti bagging memberikan kontribusi yang baik untuk proses pembelajaran model decission tree pada data telemarketing dengan hasil akurasi terbaik 98,7%.References
C. S. T. Koumetio, W. Cherif, and S. Hassan, “Optimizing the prediction of telemarketing target calls by a classification technique,” Proc. - 2018 Int. Conf. Wirel. Networks Mob. Commun. WINCOM 2018, no. October, 2019, doi: 10.1109/WINCOM.2018.8629675.
E. M. A. Elsalamony A. Hany, “Bank Direct Marketing Based on Neural Network,” Adv. Energy Mater., vol. 8, no. 25, pp. 1–9, 2018, doi: 10.1002/aenm.201800466.
K. C. Schneider, “Telemarketing as a promotional tool-its effects and side effects,” J. Consum. Mark., vol. 2, no. 1, p. 29, 1985, doi: 10.1108/eb038818.
E. Zeinulla, K. Bekbayeva, and A. Yazici, “Comparative study of the classification models for prediction of bank telemarketing,” IEEE 12th Int. Conf. Appl. Inf. Commun. Technol. AICT 2018 - Proc., pp. 1–5, 2018, doi: 10.1109/ICAICT.2018.8747086.
R. Vaidehi, “Predictive Modeling to Improve Success Rate of Bank Direct Marketing Campaign,” Int. J. Manag. Bus. Stud., vol. 6, no. 1, pp. 22–24, 2016.
S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success of bank telemarketing,” Decis. Support Syst., vol. 62, pp. 22–31, 2014, doi: 10.1016/j.dss.2014.03.001.
V. Yadav, M. Sreelatha, and T. V. Rajinikanth, “Classification of telemarketing data using different classifier algorithms,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 12, pp. 1300–1306, 2019, doi: 10.35940/ijitee.L3917.1081219.
J. Asare-Frempong and M. Jayabalan, “Predicting customer response to bank direct telemarketing campaign,” 2017 Int. Conf. Eng. Technol. Technopreneurship, ICE2T 2017, vol. 2017-Janua, pp. 1–4, 2017, doi: 10.1109/ICE2T.2017.8215961.
K. H. Kim, C. S. Lee, S. M. Jo, and S. B. Cho, “Predicting the success of bank telemarketing using deep convolutional neural network,” Proc. 2015 7th Int. Conf. Soft Comput. Pattern Recognition, SoCPaR 2015, pp. 314–317, 2016, doi: 10.1109/SOCPAR.2015.7492828.
W. Jin and Y. He, “Three data mining models to predict bank telemarketing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 490, no. 6, 2019, doi: 10.1088/1757-899X/490/6/062075.
D. Grzonka, G. Suchacka, and B. Borowik, “Application of Selected Supervised Classification Methods to Bank Marketing Campaign,” Inf. Syst. Manag., vol. 5, no. 1, pp. 36–48, 2016.
S. Palaniappan, A. Mustapha, C. F. Mohd Foozy, and R. Atan, “Customer Profiling using Classification Approach for Bank Telemarketing,” JOIV Int. J. Informatics Vis., vol. 1, no. 4–2, p. 214, 2017, doi: 10.30630/joiv.1.4-2.68.
L. Rahman, N. A. Setiawan, and A. E. Permanasari, “Feature selection methods in improving accuracy of classifying students’ academic performance,” in 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Nov. 2017, no. 1, pp. 267–271, doi: 10.1109/ICITISEE.2017.8285509.
A. Saifudin and R. S. Wahono, “Penerapan Teknik Ensemble untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software,” J. Softw. Eng., vol. 1, no. 1, pp. 28–37, 2015.
L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996, doi: 10.1007/bf00058655.
Y. Freund and R. E. Schapire, “A Short Introduction to Boosting,” J. Japanese Soc. Artif. Intell., vol. 14, no. 5, pp. 771–780, 1999, [Online]. Available: http://arxiv.org/abs/1508.01136.
V. Estivill-Castro, M. Lombardi, and A. Marani, “Improving binary classification of web pages using an ensemble of feature selection algorithms,” in Proceedings of the Australasian Computer Science Week Multiconference on - ACSW ’18, 2018, pp. 1–10, doi: 10.1145/3167918.3167963.
R. Sikora and O. Al-Laymoun, “A Modified Stacking Ensemble Machine Learning Algorithm Using Genetic Algorithms,” in Artificial Intelligence, IGI Global, pp. 395–405.
M. Mirqotussa’adah, M. A. Muslim, E. Sugiharti, B. Prasetiyo, and S. Alimah, “Penerapan Dizcretization dan Teknik Bagging Untuk Meningkatkan Akurasi Klasifikasi Berbasis Ensemble pada Algoritma C4.5 dalam Mendiagnosa Diabetes,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 8, no. 2, p. 135, 2017, doi: 10.24843/lkjiti.2017.v08.i02.p07.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Muhammad Eka Purbaya, Anggit Ferdita Nugraha, Sapriani Gustina, Muhammad Khusaini Azis

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/