Peningkatan Kecepatan Algoritma k-NN Untuk Sistem Pengklasifikasian Kendaraan Bermotor
DOI:
https://doi.org/10.33633/tc.v19i2.3458Keywords:
k-nearest neighbor, clustering, klasifikasi jenis kendaraan, mesin pembelajaranAbstract
K-Nearest Neighbor (KNN) merupakan algoritma mesin pembelajaran yang memiliki akurasi yang baik meski sangat sederhana untuk diimplementasikan. Namun, salah satu kelemahan algorima KNN adalah kecepatan komputasi yang sangat tergantung pada jumlah dataset yang dimiliki. Penelitian ini mencoba mengusulkan sebuah strategi untuk meningkatkan kecepatan algoritma KNN tetapi dengan akurasi yang hampir sama dengan standard KNN. Jika pada standar KNN proses hanya dilakukan dengan menyimpan data latih, yang kemudian akan dibandingkan dengan data uji baru dengan cara menghitung jarak satu persatu, sementara strategi yang diusulkan mencoba mengurangi jumlah data latih dengan strategi clustering, sehingga jumlah data yang akan dibandingkan dengan data uji lebih sedikit. Akibatnya, diharapkan waktu prosesnya menjasi lebih cepat. Strategi yang diusulkan akan diterapkan pada kasus klasifikasi jenis kendaraan berbasis pengolahan citra digital. Untuk menghitung tingkat akurasi dan kecepatan, maka metode yang diusulkan akan dievaluasi menggunakan dataset yang dikumpulkan melalui internet.References
Babu, V. S. dan Viswanath, P., “Rough-fuzzy weighted k-nearest leader classifier for large data sets,” Pattern Recognition, vol. 42, no. 2009, pp.1719–1731, 2009.
Dasarathy, B. V. “Data mining tasks and methods: Classification: Nearest-neighbor approaches,” in Handbook of data mining and knowledge discovery. New York: Oxford University Press, pp. 288–298, 2002.
Hassan, M. R., Hossain, M. M., Bailey, J., dan Ramamohanarao, K. “Improving k-nearest neighbor classification with distance functions based on receiver operating characteristics,” in W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 489-504. 2008.
Fix, E. dan Hodges, Jr. J.L., “Discriminatory Analysis: Non-parametric Discrimination: Small Sample Performance,” Report No. 11, USAF School of Aviation Medicine, Randolph Field, Texas, 1952.
Duda, R. O., Hart, P. E., dan Stork, D. G., Pattern Classification, 2nd ed. John Wiley & Sons: A Wiley-interscience Publication, 2000.
Nicolas, G.-P. dan Domingo, O.-B., “Boosting k-nearest neighbor classifier by means of input space rejection,” Expert systems with application 36, pp. 10570-10582, 2009.
Viswanath, P., dan Sarma, T. H., “An improvement to k-nearest neighbor classifier,” IEEE Recent Advances in Intelligent Computational Systems, pp, 227-231, 2011.
Zhou, C. Y., dan Chen, Y. Q., “Improving nearest neighbor classification with cam weighted distance,” Pattern recognition Vol. 39, pp. 635-645, 2006.
Jiang, Z. H. S. J. “Instance cloning local naive bayes,” In Proceedings of the Eighteenth Canadian Conference on Artificial Intelligence, pages 280–291. Springer, 2005.
Frank, H. M. P. B. “Locally weighted naive bayes,” In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 249–256. Morgan Kaufmann, 2003.
Jiang, L., Zhang, H., dan Cai., Z., “Dynamic k-nearest-neighbor naive bayes with attribute weighted,” In Proceedings of the 3rd International Conference on Fuzzy Systems and Knowledge Discovery, pages 365–368. Springer, 2006.
Manocha, S., dan Girolami, M. A., “An empirical analysis of the probabilitics k-nearest neighbor classifier,” Pattern Recognition Letter 28, pp. 1818-1824, 2007.
Jiang, L., Cai, Z., Wang, D., dan Jiang, S., “Survey of improving k-nearest neighbor for classification,” FSKD, 2007.
N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, ICPR, volume 2, pages 886–893, INRIA Rhˆone-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Wahyono Wahyono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/