Seleksi Fitur Dengan Information Gain Untuk Meningkatkan Deteksi Serangan DDoS menggunakan Random Forest
DOI:
https://doi.org/10.33633/tc.v19i1.2860Keywords:
Seleksi fitur, DDoS, Information Gain, Random Forest, CICIDS-2017Abstract
Tantangan deteksi serangan saat ini adalah jumlah trafik yang besar dan beragam serta hadir jenis serangan baru. Sehingga diperlukan teknik baru untuk meningkatkan performa deteksi. Dengan pesatnya perkembangan teknologi layanan komunikasi, menghasilkan trafik dengan informasi yang beragam. Pada dasarnya tidak semua informasi pada trafik jaringan digunakan untuk mendeteksi serangan seperti DDoS. Penelitian ini bertujuan meningkatkan performa Random Forest dalam mendeteksi serangan DDoS dengan seleksi fitur menggunakan teknik Information Gain. Berdasarkan hasil eksperimen diperoleh bahwa teknik yang diusulkan mampu meningkatkan akurasi deteksi DDoS hingga 99.99% dengan tingkat alarm palsu 0.001Downloads
Published
Issue
Section
License
Copyright (c) 2020 kurniabudi kurniabudi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/