Estimasi Parameter Super Pairwise Alignment pada Kombinasi Virus Dengue Menggunakan Particle Swarm Optimization
DOI:
https://doi.org/10.33633/tc.v18i3.2528Keywords:
Estimasi Parameter, Super Pairwise Alignment, Pensejajaran Sekuens, Particle Swarm OptimizationAbstract
Di Indonesia terdapat empat jenis virus dengue atau demam berdarah. Untuk melihat tingkat kesamaan (similarity) antara dua sekuens virus, dibutuhkan proses pensejajaran pada sekuens virus. Metode yang digunakan untuk pensejajaran pada dua sekuens virus adalah Super Pairwise Alignment (SPA). Nilai fungsi objective pada SPA adalah nilai penalty antara dua sekuens virus. Karena nilai fungsi objective tergantung pada parameter SPA, maka pada penelitian ini nilai parameter SPA akan diestimasi menggunakan metode heuristik seperti Particle Swarm Optimization (PSO). Simulasi diterapkan pada enam kombinasi virus dengue untuk proses estimasi parameter SPA. Berdasarkan hasil simulasi pada enam kombinasi virus dengue, PSO dapat menemukan parameter SPA yang optimal secara pendekatan. Parameter SPA yang optimal juga dapat mengetahui posisi dan panjang dari unit sekuens yang mengalami penambahan atau penghapusan.References
Pradana, M.S., Amiroch, S., 2019, Protein Sekuens Analysis of the Zika Virus and the Dengue Virus Using Smith Waterman Algorithm, AIP Conference Proceeding, vol. 2084, Depok, Agustus.
Shahab, M.L, Irawan, M.I., 2017, Sekuens Alignment Using Nature-Inspired Metaheuristic Algorithm, International Journal of Computing Science and Applied Mathematics, vol 3, hal 27-31.
Kennedy, J., Eberhart, R.C., 1995, Particle Swarm Optimization, Proceedings IEEE Int. Conf. Neural Network
Rahmalia, D., 2018, Teknik Penalti pada Optimisasi Berkendala Menggunakan Particle Swarm Optimization, JMPM : Jurnal Matematika dan Pendidikan Matematika, vol 3, hal 44-52.
Rahmalia, D., 2017, Particle Swarm Optimization-Genetic Algorithm (PSOGA) on Linear Transportation Problem, vol 1867, AIP Conference Proceeding, Surabaya, November.
Herlambang, T., Rahmalia, D., Yulianto, T., 2019, Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for Optimizing PID Parameters on Autonomous Underwater Vehicle (AUV) Control System, Journal of Physics : Conference Series, vol. 1211, Jember, November.
Rahmalia, D., Herlambang, T., 2017, Prediksi Cuaca Menggunakan Algoritma Particle Swarm Optimization-Neural Network (PSONN), Prosiding Seminar Nasional Matematika dan Aplikasinya, Oktober.
Isaev, A., 2004, Introduction to Mathematical Methods in Bioinformatics, Springer, Berlin.
Shen, S.N., Tuszynski, J.A., 2008, Theory and Mathematical Model for Bioinformatics, Springer, Berlin.
Rao, S.S., 2009, Engineeringi Optimization Theory and Practice, John Wiley and Sons, New Jersey.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Dinita Rahmalia, Arif Rohmatullah, Mohammad Syaiful Pradana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/