Rancang Bangun Sistem Rekomendasi Tempat Makan Menggunakan Algoritma Typicality Based Collaborative Filtering
DOI:
https://doi.org/10.33633/tc.v18i4.2515Abstract
Makanan merupakan bagian penting bagi manusia baik sebagai kebutuhan primer maupun sebagai bagian dari gaya hidup seseorang. Tempat makan yang semakin banyak dan tawaran makanan yang beragam, membuat seseorang memiliki lebih banyak pilihan akan tempat makan yang dapat dikunjungi. Dengan dibantu oleh teknologi, sekarang seseorang bisa mencari rekomendasi dengan menggunakan algoritma sistem rekomendasi. Saat ini ada tiga algoritma sistem rekomendasi yang populer yaitu Content Based Filtering (CBF), Collaborative Filtering (CF) dan metode hybrid. Metode CF merekomendasikan sebuah item kepada pengguna dengan memprediksi preferensi dari pengguna aktif terhadap sejumlah item berdasarkan preferensi dari pengguna atau item lain yang mirip. Ada dua jenis metode dalam CF yaitu User Based CF dan Item Based CF. Terdapat sebuah metode baru yang dikembangkan dari metode User Based CF, metode ini adalah Typicality Based CF. Typicality Based CF (TyCo) memiliki kelebihan yang tidak dimiliki metode CF lainnya dapat memberikan prediksi yang akurat walau data terbatas, dapat melakukan clustering tanpa algoritma tambahan dan dapat mengatasi masalah cold-start yang biasa dialami metode CF. Berdasarkan pengujian yang telah dilakukan diketahui bahwa aplikasi ini memiliki nilai rata-rata Mean Absolute Error (MAE) sebesar 1.366 yang disebabkan karena kurangnya data training.Downloads
Published
Issue
Section
License
Copyright (c) 2019 Kevin Hartarto Muliadi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/