Sistem Klasifikasi Jenis Jeruk Impor Menggunakan Metode Klasifikasi Logarithmic Generalized Classifier Neural Network (LGCNN)
DOI:
https://doi.org/10.33633/tc.v18i3.2374Keywords:
Jenis jeruk impor, klasifikasi, ekstraksi fitur, LGCNNAbstract
Jeruk merupakan salah satu jenis buah yang sering dikonsumsi oleh manusia. Selain karena rasanya yang cukup disukai, jeruk juga dipilih sebagai buah favorit karena manfaatnya yang begitu banyak bagi kesehatan karena kaya akan vitamin C. beberapa manfaat dari buah jeruk antaralain adalah mencegah kanker, menjaga kesehatan jantung dan ginjal, menjaga stamina, membantu kesehatan syaraf, mencegah kerusakan kulit, membantu menjaga system imun dan masih banyak manfaat lainnya. Ada beberapa jenis jeruk yang dapat dibedakan melalui penginderaan. Namun jika orang tidak mengerti jenis jeruk maka sulit untuk membedakan jenis jeruk tersebut. Pada penelitian ini diusulkan Sistem klasifikasi jenis jeruk impor menggunakan metode klasifikasi LGCNN. Ada beberapa tahapan pada sistem yang dirancang yaitu preprocessing, segmentasi, ekstraksi fitur dan klasifikasi. Sistem ini dirancang untuk mengetahui jenis jeruk impor seperti jeruk ponkam, jeruk navel, jeruk valencia dan jeruk santang. Dari hasil ujicoba yang telah dilakukan menunjukkan sistem ini dapat mengklasifikasikan jenis jeruk dengan tingkat akurasi 95.75%.References
R. Sumithra, M. Suhil, and D. S. Guru, “Segmentation and Classification of Skin Lesions for Disease Diagnosis,†Procedia Comput. Sci., vol. 45, pp. 76–85, 2015.
B. Melis and M. Avci, “Logarithmic learning for generalized classifier neural network,†Neural Networks, vol. 60, pp. 133–140, 2014.
L. Busin, N. Vandenbroucke, and L. Macaire, Color Spaces and Image Segmentation, vol. 151, no. 07. Elsevier Masson SAS, 2008.
a. Camargo and J. S. Smith, “An image-processing based algorithm to automatically identify plant disease visual symptoms,†Biosyst. Eng., vol. 102, no. 1, pp. 9–21, 2009.
N. Otsu, “‘A Threshold Select[1] N. Otsu, “‘A Threshold Selection Method from Gray-Level Histograms,’†IEEE Trans. Syst. MAN, Cybern., vol. C, no. 1, pp. 62–66, 1979.ion Method from Gray-Level Histograms,’†IEEE Trans. Syst. MAN, Cybern., vol. C, no. 1, pp. 62–66, 1979.
T. Chen, Y. Chen, and S. Chien, “Fast image segmentation based on K-Means clustering with histograms in HSV color space,†2008 IEEE 10th Work. Multimed. Signal Process., pp. 322–325, 2008.
J. Pang, Z. Y. Bai, J. C. Lai, and S. K. Li, “Automatic segmentation of crop leaf spot disease images by integrating local threshold and seeded region growing,†Proc. 2011 Int. Conf. Image Anal. Signal Process. IASP 2011, pp. 590–594, 2011.
H. Yao, Q. Duan, D. Li, and J. Wang, “‘An Improved K -means Clustering Algorithm for Fish Image Segmentation,’†Math. Comput. Model., vol. 58, no. 3–4, pp. 790–798, 2013.
B. M. Ozyildirim and M. Avci, “Generalized classifier neural network,†Neural Networks, vol. 39, pp. 18–26, 2013.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Techno.Com

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/