Analisis JST Dalam Memprediksi Jumlah Tamu Pada Hotel NonBintang
DOI:
https://doi.org/10.33633/tc.v17i4.1762Keywords:
JST, Backpropagation, Analisis, HotelAbstract
Analysis on a prediction (forecasting) is very important to do in a study, So with this data analysis will be obtained a clear picture of the issues discussed. As well as in predicting the number of  guests in non-star hotels. This research is expected to be useful for both Government and private parties as one of the study materials in the development of hotel business, as well as for academics as study material / research especially related to tourism and hospitality field. The data used in this study is data on the number of guests in non-star hotels by province from the Central Bureau of Statistics Indonesia from 2011 to 2016. This study uses the method of artificial neural network Backpropagation using 5 architectural models, those are 4-19-1, 4-50-1, 4-17-1, 4-16-1, 4-22-. From  architecture, the best architecture is 12-19-1 with an accuracy of 88.2%, MSE 0.10206089 with error rate used 0.001 - 0.05. Thus, this model is good enough to predict the number of guests indonesia in non-star hotelsReferences
K. Lia and W. U. Indah, “Analisis dan Perancangan sistem informasi Hotel Graha Prima Pacitan,†Journal Speed, vol. 6, no. 3, p. 6, 2014.
S. M. Chandra and M. V. J. Tielung, “Pengaruh Kualitas Pelayanan, Promosi, Dan Lokasi Terhadap Keputusan Konsumen Menggunakan Hotel Baliem Pilamo Di Wamena,†Jurnal EMBA, vol. 3, no. 3, pp. 959–970, 2015.
Retno Susanti, “Faktor-Faktor Yang Mempengaruhi Kepuasan Pelanggan ( Studi Kasus Kualitas Pelayanan di Hotel X Surabaya ),†Ekonomi, vol. 2, pp. 1–15, 2015.
S. C. Rini Triana, Mukhlis Yunus, “PENGARUH PROGRAM BAURAN PROMOSI TERHADAP,†Jurnal manajemen, vol. 4, no. 2, pp. 229–236, 2015.
A. Wanto, “Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts,†Jurnal Teknologi dan Sistem Informasi, vol. 3, no. 3, pp. 370–380, Jan. 2018.
A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,†International Journal Of Information System & Technology, vol. 1, no. 1, pp. 43–54, 2017.
N. Nasution, A. Zamsuri, L. Lisnawita, and A. Wanto, “Polak-Ribiere updates analysis with binary and linear function in determining coffee exports in Indonesia,†IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.
B. Febriadi, Z. Zamzami, Y. Yunefri, and A. Wanto, “Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries,†IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.
J. Wahyuni, Y. W. Paranthy, and A. Wanto, “Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara,†Jurnal Infomedia, vol. 3, no. 1, pp. 18–24, 2018.
J. R. Saragih, M. Billy, S. Saragih, and A. Wanto, “Analisis Algoritma Backpropagation Dalam Prediksi Nilai Ekspor (Juta USD),†Jurnal Pendidikan Teknologi dan Kejuruan, vol. 15, no. 2, pp. 254–264, 2018.
R. E. Pranata, S. P. Sinaga, and A. Wanto, “Estimasi Wisatawan Mancanegara Yang Datang ke Sumatera Utara Menggunakan Jaringan Saraf,†Jurnal semanTIK, vol. 4, no. 1, pp. 97–102, 2018.
S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),†International Journal Of Information System & Technology, vol. 1, no. 1, pp. 34–42, 2017.
M. Fauzan et al., “Epoch Analysis and Accuracy 3 ANN Algorithm Using Consumer Price Index Data in Indonesia,†2018, pp. 1–7.
A. A. Fardhani, D. Insani, N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,†Jurnal Infomedia, vol. 3, no. 1, pp. 25–30, 2018.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,†Register - Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.
M. Yanto, S. Defit, and G. W. Nurcahyo, “ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION ( Studi Kasus Hotel Grand Zuri Padang ),†Jurnal KomTekInfo, vol. 2, no. 1, pp. 34–39, 2015.
A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,†Jurnal & Penelitian Teknik Informatika Sinkron, vol. 2, no. 2, pp. 37–43, Oct. 2017.
A. Wanto, “Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Jumlah Kemiskinan Pada Kabupaten/Kota Di Provinsi Riau,†Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 5, no. 1, pp. 61–74, 2018.
Y. D. Lestari, “Jaringan Syaraf Tiruan Untuk Prediksi Penjualan Jamur Menggunakan Algoritma Backropagation,†Journal Information System Development (ISD), vol. 2, no. 1, pp. 40–46, 2017.
S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In Indonesia,†IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–8, 2018.
A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,†Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–7, 2017.
I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,†Jurnal Teknologi Informasi Techno, vol. 17, no. 3, pp. 302–311, 2018.
M. A. P. Hutabarat, M. Julham, and A. Wanto, “Penerapan Algoritma Backpropagation Dalam Memprediksi Produksi Tanaman Padi Sawah Menurut Kabupaten/Kota di Sumatera Utara,†Jurnal semanTIK, vol. 4, no. 1, pp. 77–86, 2018.
E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka di Indonesia,†Jurnal semanTIK, vol. 4, no. 1, pp. 49–56, 2018.
A. Wanto et al., “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,†2018, pp. 1–7.
N. Susanti, “Penerapan Model Neural Network Backpropagation untuk Prediksi Harga Ayam,†Seminar Nasional Teknologi Industri dan Informatika (SNATIF), pp. 325–332, 2014.
A. Wanto et al., “Analysis of Standard Gradient Descent with GD Momentum And Adaptive LR for SPR Prediction,†2018, pp. 1–9.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Techno.Com

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/