Prediksi Nasabah Yang Berpotensi Membuka Simpanan Deposito Menggunakan Naive Bayes Berbasis Particle Swarm Optimization
DOI:
https://doi.org/10.33633/tc.v17i2.1648Keywords:
prediksi nasabah yang berpotensi membuka deposito, data mining, naive baiyes, particle swarm optimization, seleksi fiturAbstract
Deposito masih merupakan pilihan utama bagi masyarakat untuk berinvestasi saat ini dan hal itu merupakan kesempatan bagi bank-bank untuk menentukan strategi pemasaran dan promosi yang lebih efisien dengan tidak terlalu banyak menggunakan biaya sehingga masyarakat tertarik untuk berinvestasi pada produk deposito dari bank tersebut. Atas dasar permasalahan tersebut, maka dilakukan penelitian untuk memprediksi nasabah yang berpotensi membuka deposito dengan menggunakan teknik data mining khususnya algoritma Naive Bayes berbasis PSO. PSO pada penelitian ini akan digunakan untuk feature selection yaitu dengan memilih attribut terbaik dengan memilih attribut yang sudah diberikan bobot sehingga dapat meningkatkan hasil akurasi dari prediksi menggunakan algoritma Naive Bayes. Hasil dari prediksi nasabah yang berpotensi membuka deposito dengan menggunakan Naive Baiyes memiliki akurasi sebesar 82,19%. Sedangkan prediksi yang menggunakan Naive Baiyes berbasis PSO memiliki akurasi sebesar 89,70%. Penggunaan algoritma PSO ternyata meningkatkan akurasi sebesar 7,51% dan algoritma Naive Baiyes berbasis PSO tersebut dapat digunakan untuk decision support system nasabah yang berpotensi membuka deposito karena menjadi model algoritma yang terbaik.ÂReferences
Lembaga Penjamin Simpanan, "Distribusi Simpanan Bank Umum," Lembaga Penjamin Simpanan, Jakarta, 2013.
Dewan Perwakilan Rakyat Republik Indonesia, "Undang-Undang Republik Indonesia Nomor 10 Tahun 1998," Dewan Perwakilan Rakyat Republik Indonesia, Jakarta, 1998.
Satsya Yoga Baswara, "Analisa Nilai Hasil Investasi Deposito Rupiah, Deposito Dolar Amerika, dan Dinar Emas Dengan Emas Sebagai Alat Ukur," Skripsi Akuntansi Universitas Diponegoro, Semarang, 2012.
Charles X. Ling and Chenghui Li, "Data Mining for Direct Marketing: Problems and Solutions," in Proceedings of the 4th KDD conference, 1998, pp. 73-79.
Chuangxin Ou, Chunnian Liu, Jiajing Huang, and Ning Zhong, "On Data Mining for Direct Marketing," in Proceedings of the 9th RSFDGrC conference, 2003, pp. 491-498.
Carole Page and Ye Luding, "Bank Manager’s Direct Marketing Dilemmas – Customer’s Attitudes and Purchase Intention," International Journal of Bank Marketing, vol. 21, no. 3, pp. 147-163, 2003.
Daniel T. Larose, Discovering Knowledge In Data. United States of America: John Wiley & Sons, Inc., 2005.
Kusrini and Emha Taufiq Luthfi, Algoritma Data Mining, 1st ed. Yogyakarta, Indonesia: Andi, 2009.
Eko Prasetyo, Data Mining : Konsep dan Aplikasi menggunakan MATLAB, 1st ed. Yogyakarta, Indonesia: Andi, 2012.
Florin Gorunescu, Data Mining Concepts, Models and Techniques. Chennai, India: Springer, 2011.
Sergio Moro and Raul M.S. Laureano, "Using Data Mining for Bank Direct Marketing: An Application of The CRISP-DM Methodology," Instituto Universitário de Lisboa, Lisboa, 2011.
Nayyar A. Zaidi, Jesus Cerquides, Mark J. Carman, and Geoffrey I.Webb, "Alleviating Naive Bayes Attribute Independence Assumption by AttributeWeighting," Journal of Machine Learning Research, no. 14, pp. 1947-1988, 2013.
Sheng-Wei Fei, Yu-Bin Miao, and Cheng-Liang Liu, "Chinese Grain Production Forecasting Method Based on Particle Swarm Optimization-based Support Vector Machine," in Recent Patents on Engineering, Shanghai, 2009, pp. 8-12.
Syaeful Mujab, "Pencarian Model Terbaik antara Algoritma C4.5 dan C4.5 Berbasis Particle Swarm Optimization untuk Prediksi Promosi Deposito," Universitas Dian Nuswantoro, Semarang, Skripsi Teknik Informatika 2013.
Abbie Dwi Pradibyo, "Analisa Perbandingan Kinerja Algoritma Klasifikasi Data Mining Untuk Prediksi Nasabah Bank yang Berpotensi Membuka Simpanan Deposito Berjangka," Universitas Dian Nuswantoro, Semarang, Skripsi Teknik Informatika 2013.
Jie Lin and Jiankun Yu, "Weighted Naive Bayes Classification Algorithm Based on Particle Swarm Optimization," IEEE, 2011.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/