Optimasi Fitur dalam Klasterisasi Mahasiswa Program Studi Sistem Informasi Dengan Algoritma Genetik
DOI:
https://doi.org/10.33633/tc.v16i3.1392Keywords:
klasterisasi, optimasi fitur, mahasiswaAbstract
Klasterisasi merupakan proses mengelompokkan atau menggolongkan obyek berdasarkan informasi yang diperoleh dari data yang menjelaskan hubungan antar obyek dengan prinsip untuk memaksimalkan kesamaan antar anggota satu kelas dan meminimumkan kesamaan antar kelas. Implementasi klasterisasi dapat diterapkan pada berbagai bidang, salah satunya dalam hal penentuan kompetensi mahasiswa. Penentuan kompetensi mahasiswa merupakan hal yang penting karena akan memudahkan mahasiswa untuk memasuki dunia kerja yang sesuai dengan kompetensinya. Mahasiswa akan memiliki landasan untuk bekerja baik sebagai karyawan ataupun sebagai pengusaha berdasarkan kompetensi yang dimilikinya. Dengan adanya kompetensi akan berpengaruh positif terhadap kinerja karyawan pada suatu perusahaan. Teknik klasterisasi data (clustering) telah dipakai dengan sangat luas sekarang ini. Namun ternyata pada kenyataannya, masalah-masalah tentang fitur yang digunakan dalam proses klasterisasi data masih sangat diabaikan, sehingga kerap kali terjadi penggunaan fitur-fitur yang kurang relevan dalam proses klasterisasi data (clustering) tersebut. Hal ini dapat mengakibatkan hasil klasterisasi juga akan menjadi kurang optimal. Sehingga dibutuhkan proses optimasi fitur. Oleh karena itu dilakukan optimasi fitur dalam klasterisasi mahasiswa Program Studi Sistem Informasi menggunakan algoritma genetik unutuk menentukan fitur yang valid dan mengabaikan fitur yang tidak valid. Sehingga proses klasterisasi nantinya akan dapat menghasilkan nilai fitness dan tingkat konvergensi yang lebih baik serta membentuk hasil cluster yang semakin akurat terkait dengan penentuan kompetensi mahasiswa. Kata kunci— klasterisasi, optimasi fitur, mahasiswaReferences
Basuki, Achmad. (2003). Algoritma Genetika, Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning, Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya.
Hsiang-Hsi Liu a, Chorng-Shyong Ong. (2008). Variable selection in clustering for marketing segmentation using genetic algorithms, Expert Systems with Applications 34. 502–510.
Kyoung-jae Kim, Hyunchul Ahn. (2008). A recommender system using GA K-Means clustering in an online shopping market. Expert Systems with Applications 34. 1200–1209.
Laetitia Jourdan, Clarisse Dhaenens, El-Ghazali Talbi. (2001). A Genetic Algorithm for Feature Selection in Data-Mining for Genetics. Metaheuristics International Conference. 4th. 29-33.
Posuma, Christilia O. (2013). Kompetensi, Kompensasi, Dan Kepemimpinan Pengaruhnya Terhadap Kinerja Karyawan Pada Rumah Sakit Ratumbuysang Manado. Jurnal EMBA Vol.1 No.4. 646-656.
Rouhollah Maghsoudi, dkk. (2011). Representing the New Model for Improving K-Means Clustering Algorithm based on Genetic Algorithm. The Journal of Mathematics and Computer Science Vol .2 No.2.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Rosalia Hadi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---