Penerapan Algoritma K-Means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa
DOI:
https://doi.org/10.33633/tc.v16i1.1284Abstract
Dalam lingkup perguruan tinggi, aktivitas penilaian kinerja juga diterapkan untuk menilai kinerja dosen. Dasar yang digunakan dalam penilaian tersebut menggunakan dasar tri dhrama perguruan tinggi. Dalam penilaian kinerjanya, diperlukan data terkait kepuasan mahasiswa terhadap dosen. Data yang digunakan dalam penelitian ini adalah data kepuasan mahasiswa jurusan Ilmu Pengetahuan Alam, FMIPA, UNNES, berjumlah 146 untuk semua dosen di prodi yang berjumlah 12 dosen. Dalam pengambilan data menggunakan kuesioner dari Badan Penjaminan Mutu Unnes. Varibale yang digunakan (1) kehandalan dosen (reliability); (2) sikap tanggap (responsiveness); (3) jaminan (assurance); dan (4) empati (empathy). Data akan diolah dengan melakukan clustering kinerja dosen dalam cluster baik, atau kurang. Metode clustering yang digunakan dalam penelitian ini adalah metode K-Means. Cetroid data untuk cluster_baik 17.099 dan cluster_kurang 15.874. Sehingga diperoleh penilaian dosen berdasarkan indeks kepuasan mahasiswa dengan 5 dosen cluster_baik dan 7 dosen_cluster kurang. Hasil yang dari penelitian dapat digunakan untuk meningkatkan kinerja dosen dalam mengajar untuk meningkatkan indeks kepuasan mahasiswa. Kata kunci—Clustering, K-Means, Data Mining, Penilaian DosenÂReferences
Magkunegara, Anwar. AA., 2011, Manajemen Sumber Daya Manusia Perusahaan. Bandung: Penerbit Remaja Rosda Karya.
Undang-Undang Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional.
Sugiharti, E., & Muslim, M. A., 2016, On-line Clustering of Lecturers Performance of Computer Science Department of Semarang State University Using K-Means Algorithm, Journal of Theoretical and Applied Information Technology, 83(1).
Singla, A., & Karambir, M. 2012. Comparative Analysis & Evaluation of Euclidean Distance Function and Manhattan Distance Function Using K-Means Algorithm. International Journal of Advanced Research in Computer Science and Software Engineering (IJARSSE), 2(7), 298-300.
Prasetyo, E. 2014. Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta. Penerbit ANDI Yogyakarta, 218
Venkateswarlu, B., & Raju, P. G. 2013. Mine Blood Donors Information through Improved K-Means Clustering. arXiv preprint arXiv:1309.2597.
Hermawati, F. A. 2013. Data Mining. Yogyakarta: ANDI.
Soni, N., & Ganatra, A., 2012, Categorization of several Clustering algorithms from different perspective: a review, International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 63-68.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Aldi Nurzahputra, Much Aziz Muslim, Miranita Khusniati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/