PERBANDINGAN K-NEAREST NEIGHBOR DAN NAIVE BAYES UNTUK KLASIFIKASI TANAH LAYAK TANAM POHON JATI

Authors

  • Didik Srianto Teknik Informatika, Universitas Dian Nuswantoro
  • Edy Mulyanto Teknik Informatika, Universitas Dian Nuswantoro

DOI:

https://doi.org/10.33633/tc.v15i3.1242

Abstract

Data mining adalah proses menganalisa data dari perspektif yang berbeda dan menyimpulkannya menjadi informasi-informasi penting yang dapat dipakai untuk meningkatkan keuntungan, memperkecil biaya pengeluaran, atau bahkan keduanya. Secara teknis, data mining dapat disebut sebagai proses untuk menemukan korelasi atau pola dari ratusan atau ribuan field dari sebuah relasional database yang besar. Pada perum perhutani KPH SEMARANG saat ini masih menggunakan cara manual untuk menentukan jenis tanaman (jati / non jati). K-Nearest Neighbour atau k-NN merupakan algoritma data mining yang dapat digunakan untuk proses klasifikasi dan regresi. Naive bayes Classifier merupakan suatu teknik yang dapat digunakan untuk teknik klasifikasi. Pada penelitian ini k-NN dan Naive Bayes akan digunakan untuk mengklasifikasi data pohon jati dari perum perhutani KPH SEMARANG. Yang mana hasil klasifikasi dari k-NN dan Naive Bayes akan dibandingkan hasilnya. Pengujian dilakukan menggunakan software RapidMiner. Setelah dilakukan pengujian k-NN dianggap lebih baik dari Naife Bayes dengan akurasi 96.66% dan 82.63. Kata kunci -k-NN,Klasifikasi,Naive Bayes,Penanaman Pohon Jati

Downloads

Published

2016-09-30