Penerapan Algoritma Linear Regression dan Support Vector Regression dalam Prediksi Temperatur Udara di Malang
DOI:
https://doi.org/10.62411/tc.v24i1.12094Abstract
Perubahan iklim global dan peningkatan variabilitas cuaca membuat prediksi temperatur udara menjadi salah satu kebutuhan penting di berbagai sektor. Temperatur udara merupakan parameter penting dalam meteorologi yang mempengaruhi berbagai aspek kehidupan manusia. Predisi temperatur udara saat ini banyak memanfaatkan algoritma machine learning, namum nilai akurasi masih belum optimal. Tujuan dari penelitian ini untuk meningkatkan akurasi prediksi temperatur udara rata-rata dengan menggunakan pendekatan berbasis machine learning. Metode dalam penelitian ini menggunakan algoritma Linear Regression dan Support Vector Regression (linier dan gaussian non linear) karena memiliki akurasi prediksi data yang cukup baik di berbagai bidang termasuk bidang hidrologi. Penelitian ini menggunakan data dari Badan Meteorologi Klimatologi dan Geofisika (BMKG) lokasi Stasiun Klimatologi Jawa Timur periode data tahun 2019-2023 dengan parameter cuaca temperatur rata-rata (TAV), kelembaban udara (HAV), kecepatan angin (WAV), curah hujan (RR), tekanan udara (PPP), Penyinaran matahari (SUN) dan titik embun (DEW_POINT). Kinerja model dievaluasi menggunakan pengukuran metrik MSE, RMSE, MAE, MAPE dan R². Hasil pengukuran kinerja model algoritma Gaussian support vector Regression (non linier SVR) lebih baik dibanding dengan linear support vector Regression (linear SVR) dan algoritma linear regression dengan nilai yang lebih tinggi R² sebesar 0,9891 ± 0,0011 dan nilai error yang lebih rendah pada semua metrik pengukuran. Kata kunci: Prediksi temperatur udara, machine learning, Linear Regression, Suport Vektor RegressionDownloads
Published
Issue
Section
License
Copyright (c) 2025 Karnisih Karnisih, Sunarno Sunarno, Iqbal Iqbal, Djuniadi Djuniadi , Feddy Setio Pribadi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/