Klasifikasi Emosional Ulasan Pelanggan dengan Pendekatan NLP menggunakan Metode Ensemble dan ROS
DOI:
https://doi.org/10.62411/tc.v23i4.11559Abstract
Konsep Orientasi Pelanggan sangat penting bagi perusahaan untuk berkembang di era saat ini, dengan memanfaatkan teknologi untuk mendapatkan wawasan yang mendalam tentang perilaku pelanggan mereka. Salah satu alat teknologi tersebut adalah pembelajaran mesin, khususnya yang menggunakan pendekatan pemrosesan bahasa alami (NLP). Penelitian ini menggunakan lima algoritma yang berbeda dan menggabungkan berbagai metode untuk meningkatkan kinerja model machine learning. Melalui penerapan teknik-teknik seperti random over-sampling (ROS) dan ensemble learning, akurasi prediksi keseluruhan untuk kelas minoritas meningkat secara signifikan. Model ensemble yang diintegrasikan dengan ROS mencapai akurasi 0,90 dan mean square error 0,91, mengungguli algoritma lain yang diuji dalam penelitian ini. Pendekatan yang dioptimalkan ini tidak hanya menunjukkan keefektifan pemanfaatan teknologi untuk sebuah perusahaan dapat menerapkan strategi yang berpusat pada pelanggan, tetapi juga menyoroti pentingnya peningkatan metodologi dalam pemodelan prediktif untuk keberlanjutan bisnis. Kata kunci: Klasifikasi Emosi, Pembelajaran Mesin, Pemrosesan Bahasa Alami, Hard Voting, Random Over Sampling.Downloads
Published
Issue
Section
License
Copyright (c) 2024 Weny Indah Kusumawati, Adisaputra Zidha Noorizki, Heri Pratikno

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/