Perbandingan Performa Algoritma Random Forest dan Gradient Boosting dalam Mengklasifikasi Churn Telco
DOI:
https://doi.org/10.62411/tc.v23i3.11278Abstract
Customer churn adalah kecenderungan pelanggan berhenti dan berpindah layanan dalam periode tertentu. Ini merupakan masalah utama dalam industri telekomunikasi karena mempengaruhi keuntungan perusahaan. Mempertahankan pelanggan lebih mudah dibandingkan mendapatkan pelanggan baru. Memprediksi churn membantu sektor CRM dalam merancang strategi retensi. Tingkat churn yang tinggi dapat menurunkan pendapatan dan mengganggu stabilitas bisnis. Berdasarkan studi, tingkat churn tahunan di industri telekomunikasi berkisar antara 15% hingga 30%. Data mining, yang memanfaatkan teknik pembelajaran mesin, digunakan untuk menganalisis dan mengekstraksi pengetahuan dari data. Penelitian ini bertujuan untuk membandingkan performa dua algoritma yaitu Random Forest dan Gradient Boosting. Hasil yang didapatkan menggunakan splitting data 80:20 menunjukkan bahwa klasifikasi lebih unggul menggunakan metode Gradient Boosting dibandingkan metode Random Forest dilihat dari tingkat akurasi dan nilai ROC AUC. Metode Gradient Boosting mendapatkan nilai akurasi dan ROC AUC sebesar 83% dan 0.89, Sedangkan metode Random Forest mampu menghasilkan nilai akurasi dan ROC AUC sebesar 81% dan 0.87. Kata kunci: Churn, Gradient Boosting, Klasifikasi, Random Forest, TelcoDownloads
Published
Issue
Section
License
Copyright (c) 2024 muhammad adji Purnama, jilang ramadhani, yoga safitra anugraha, Lusiana efrizoni, rahmadheni
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---