Analisis Sentimen Popularitas Capres dan Pilpres pada Media Sosial Twitter: Perbandingan Algoritma SVM, KNN, dan Naïve Bayes
DOI:
https://doi.org/10.62411/tc.v23i2.10135Keywords:
Capres dan PilpresAbstract
Untuk memaham bagamana tokoh publk dpersepskan dan drespon oleh masyarakat d era meda sosial, analsis sentimen sangat berguna. Ini terutama berlaku karena popularitas tokoh publik meningkat di era meida sosial. Tujuan dari penelitian ini adalah untuk mengatasi masalah tersebut dan memberikan pemahaman yang bermanfaat tentang bagiamana masyarakat bertindak terhadap pemlhan presiden dan capres yang saat ini sangat diperdebatkan di medai sosial, serta bagiamana hal tu berdampak pada opn publk secara keseluruhan, khususnya d Twtter. Stud n bertujuan untuk mengkategorkan tweet emosonal ke dalam kategor postf atau negatf dengan menggunakan algortma pembagan terstruktur sepert Support Vector Machnes (SVM), Nave Bayes (NB), dan K-Nearest Neghbor. Hasl pengujan menunjukkan bahwa algortma NB memlk tngkat akuras 94,62% dan press 100%, mengalahkan SVM dan K-NN dalam menyelesakan kasus kepercayaan.References
D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.
A. Anjani, A. Chamid, and A. Murti, “Analisis Sentimen Kaum LGBT pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” JTINFO J. Tek. Inform., vol. 1, no. 2, pp. 1–8, 2022.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
D. R. Berliana and B. Santoso, “Elektabilitas Ridwan Kamil Dan Anies Baswedan Dalam Simulasi Pilpres 2024 Di Twitter (Analisis Jaringan Media Sosial Dan Analisis Sentimen Pengguna Twitter Terhadap #Ridwankamil Dan #Aniesbaswedan),” Mediakom J. Ilmu Komun., vol. 6, no. 2, pp. 150–162, 2022, doi: 10.35760/mkm.2022.v6i2.6962.
F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” J. Sains dan Inform., vol. 7, no. 2, pp. 155–164, 2021, doi: 10.34128/jsi.v7i2.331.
M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 265, 2022, doi: 10.30865/jurikom.v9i2.3989.
F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019, [Online]. Available: https://jurnal.umk.ac.id/index.php/simet/article/view/3487/1883
D. Muhidin and A. Wibowo, “Perbandingan Kinerja Algoritma Support Vector Machine dan K-Nearest Neighbor Terhadap Analisis Sentimen Kebijakan New Normal,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 5, no. 2, p. 153, 2020, doi: 10.30998/string.v5i2.6715.
A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, T. Tukino, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 1, p. 11, 2023, doi: 10.31328/jointecs.v8i1.4265.
F. A. Rohmansyah, B. Bintoro, and I. Santoso, “ANALISIS SENTIMEN TERHADAP PENERAPAN SISTEM GANJIL GENAP MENGGUNAKAN METODE K - NEAREST NEIGHBOR,” vol. 7, no. 2, pp. 165–169, 2023.
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
A. L. Hananto, B. Priyatna, and A. Y. Rahman, “Penerapan Algoritma Djikstra Pada Sistem Monitoring Petugas Lapangan Pemkab Bekasi Berbasis Android,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 4, no. 3, p. 95, 2019, doi: 10.31328/jointecs.v4i3.1078.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/