Klasifikasi Cardiovascular Diseases Menggunakan Algoritma K-Nearest Neighbors (KNN)

Authors

  • Vera Artanti Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Muhammad Faisal Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Fachrul Kurniawan Universitas Islam Negeri Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.62411/tc.v23i2.10061

Keywords:

Penyakit Kardiovaskular, K-Nearest Neighbors (KNN), Kematian

Abstract

Penyakit Kardiovaskular (Cardiovascular Diseases) adalah faktor utama kematian global, dengan jumlah korban mencapai 17,9 juta jiwa setiap tahun atau sekitar 32% dari total kematian global (World Health Organization, 2021). Faktor risiko penyakit kardiovaskular diantaranya faktor usia, semakin bertambahnya usia seseorang, maka semakin tinggi risiko terkena penyakit kardiovaskular. Faktor lain yaitu memiliki riwayat penyakit kardiovaskular dalam keluarga, diabetes, tekanan darah tinggi, obesitas (kegemukan), Pola hidup tidak sehat, dan Stres. (Kemenkes RI, 2021). Masalah pada penelitian ini adalah bagaimana mengetahui model K-Nearest Neighbors (KNN) dengan baik melalui perhitungan accuracy, recall, precision, dan f1-score pada klasifikasi penyakit kardiovaskular. Tujuan penelitin ini adalah mengetahui kinerja K-Nearest Neighbors (KNN) dengan baik melalui perhitungan accuracy, recall, precision, dan f1-score pada klasifikasi penyakit kardiovaskular. Metode K-Nearest Neighbor (KNN) adalah salah satu metode klasifikasi yang memanfaatkan pola-pola data yang ada dalam dataset untuk mengklasifikasi kategori atau kelas dari suatu sampel yang belum diketahui. Hasil klasifikasi data pelatihan menunjukkan akurasi sebesar 85.49%, dengan precision 84,43%, recall 87,04%, dan f1-score 85,71%. Melalui uji coba menggunakan KNN, diperoleh hasil dengan akurasi sebesar 91% dan nilai presisi 90%, recall 93%, dan f1-score 92%. Kesimpulan dari penelitian ini adalah metode K-Nearest Neighbor (KNN) memiliki hasil yang baik untuk melakukan klasifikasi pada penyakit kardiovaskular yaitu akurasinya 91%.

Author Biographies

Vera Artanti, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Mahasiswa Universitas Islam Negeri Maulana Malik Ibrahim Malang, Program Studi Teknik Informatika, Fakultas Sains & Teknologi

Muhammad Faisal, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Dosen Universitas Islam Negeri Maulana Malik Ibrahim Malang, Program Studi Teknik Informatika, Fakultas Sains & Teknologi

Fachrul Kurniawan, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Dosen Universitas Islam Negeri Maulana Malik Ibrahim Malang, Program Studi Teknik Informatika, Fakultas Sains & Teknologi

References

A. Lianou, D. Rallis, M. Baltogianni, A. Vlahos, H. Milionis, and V. Giapros, “Biomarkers of cardiovascular disease risk in the neonatal population,” Journal of Developmental Origins of Health and Disease, vol. 14, no. 2. Cambridge University Press, pp. 155–165, Apr. 03, 2023. doi: 10.1017/S2040174422000459.

H. Hachimi, E?cole nationale des sciences applique?es de Ke?nitra, Institute of Electrical and Electronics Engineers, and Institute of Electrical and Electronics Engineers. Morocco Section, 2019 International Conference on Optimization and Applications (ICOA): April 25-26, 2019, ENSA of Kenitra, Ibn Tofail University, Kenitra, Morocco. 2019.

K. M. Mohi Uddin, R. Ripa, N. Yeasmin, N. Biswas, and S. K. Dey, “Machine learning-based approach to the diagnosis of cardiovascular vascular disease using a combined dataset,” Intell Based Med, vol. 7, Jan. 2023, doi: 10.1016/j.ibmed.2023.100100.

W. Sangkatip and J. Phuboon-Ob, “Non-Communicable Diseases Classification using Multi-Label Learning Techniques,” in InCIT 2020 - 5th International Conference on Information Technology, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 17–21. doi: 10.1109/InCIT50588.2020.9310978.

Y. A. Shevchenko, Y. V. Vinogradenko, and Y. O. Bobrova, “Development of the Cardiovascular System Model for the Newborn Infant Simulator,” in Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, Institute of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 1821–1824. doi: 10.1109/ElConRus51938.2021.9396580.

M. Swathy and K. Saruladha, “A comparative study of classification and prediction of Cardio-VascularDiseases (CVD) using Machine Learning and Deep Learning techniques,” ICT Express, vol. 8, no. 1, pp. 109–116, Mar. 2022, doi: 10.1016/j.icte.2021.08.021.

T. S. H. Jørgensen, M. K. Wium-Andersen, M. B. Jørgensen, and M. Osler, “The impact of mental vulnerability on the relationship between cardiovascular disease and depression,” European Psychiatry, vol. 63, no. 1, 2020, doi: 10.1192/j.eurpsy.2020.20.

Savita, G. Sharma, G. Rani, and V. Singh Dhaka, “A review on machine learning techniques for prediction of cardiovascular diseases,” in PDGC 2020 - 2020 6th International Conference on Parallel, Distributed and Grid Computing, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 237–242. doi: 10.1109/PDGC50313.2020.9315747.

B. E. Alekseev, A. I. Skorobogatova, D. A. Egorov, and A. A. Anisimov, “Baroreflex Function Analysis for Assessing the Cardiovascular System’s Health,” in Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, Institute of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 1713–1717. doi: 10.1109/ElConRus51938.2021.9396321.

M. El Bekkali, Institute of Electrical and Electronics Engineers. Morocco Section, F. E?cole nationale des sciences applique?es, Ja?mi?at Si?di? Muh?ammad ibn ?Abd Alla?h, and Institute of Electrical and Electronics Engineers, The 7th Mediterranean Congress of Telecommunications 2019: CMT 2019: October 24-25, 2019, ENSA of Fez - Transmission and Information Processing Laboratory, USMBA University, Fez, Morocco. 2019.

R. Hagan, C. J. Gillan, and F. Mallett, “Comparison of machine learning methods for the classification of cardiovascular disease,” Inform Med Unlocked, vol. 24, Jan. 2021, doi: 10.1016/j.imu.2021.100606.

Z. Li and H. Zhang, “Fusing deep metric learning with KNN for 12-lead multi-labelled ECG classification,” Biomed Signal Process Control, vol. 85, Aug. 2023, doi: 10.1016/j.bspc.2023.104849.

A. B. Wibisono and A. Fahrurozi, “PERBANDINGAN ALGORITMA KLASIFIKASI DALAM PENGKLASIFIKASIAN DATA PENYAKIT JANTUNG KORONER,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019, doi: 10.35760/tr.2019.v24i3.2393.

T. Magrupov, Y. Talatov, M. Magrupova, and D. Ripka, “A technique for classifying the ecg signal into various possible states of the cardiovascular system,” in Proceedings of the 2020 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 127–131. doi: 10.1109/EExPolytech50912.2020.9243864.

S. Alim, “IMPLEMENTASI ORANGE DATA MINING UNTUK KLASIFIKASI KELULUSAN MAHASISWA DENGAN MODEL K-NEAREST NEIGHBOR, DECISION TREE SERTA NAIVE BAYES ORANGE DATA MINING IMPLEMENTATION FOR STUDENT GRADUATION CLASSIFICATION USING K-NEAREST NEIGHBOR, DECISION TREE AND NAIVE BAYES MODELS,” 2021.

T. A. Munandar and A. Q. Munir, “Implementasi K-Nearest Neighbor Untuk Prototype Sistem Pakar Identifikasi Dini Penyakit Jantung K-Nearest Neighbor for Prototype Expert System for Early Identification of Heart Disease,” Jurnal Teknologi Informasi, vol. XVII, no. 2, 2022.

H. W. Dhany, Seminar Nasional Informatika (SENATIKA) Prosiding SENATIKA 2021 Performa Algoritma K-Nearest Neighbour dalam Memprediksi Penyakit Jantung. 2021. [Online]. Available: https://www.kaggle.com/

M. Ary, D. Ayu, and F. Rismiati, “SATIN-Sains dan Teknologi Informasi Ukuran Akurasi Klasifikasi Penyakit Mesothelioma Menggunakan Algoritma K-Nearest Neighbor dan Backward Elimination,” vol. 5, no. 1, 2019, [Online]. Available: http://jurnal.stmik-amik-riau.ac.id

A. Samosir, M. Hasibuan, W. E. Justino, and T. Hariyono, “Komparasi Algoritma Random Forest, Naïve Bayes dan K-Nearest Neighbor Dalam klasifikasi Data Penyakit Jantung,” CardiovascularDiseases, vol. 15, no. 2, pp. 189–194, 2019.

M. Sholeh, D. Andayati, R. Yuliana Rachmawati, P. Studi Informatika, and F. Teknologi Informasi dan Bisnis, “DATA MINING MODEL KLASIFIKASI MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR DENGAN NORMALISASI UNTUK PREDIKSI PENYAKIT DIABETES DATA MINING MODEL CLASSIFICATION USING ALGORITHM K-NEAREST NEIGHBOR WITH NORMALIZATION FOR DIABETES PREDICTION,” 2022.

R. Arisandi, “PERBANDINGAN MODEL KLASIFIKASI RANDOM FOREST DENGAN RESAMPLING DAN TANPA RESAMPLING PADA PASIEN PENDERITA GAGAL JANTUNG,” Jurnal Gaussian, vol. 12, no. 1, pp. 136–145, May 2023, doi: 10.14710/j.gauss.12.1.136-145.

W. Xing and Y. Bei, “Medical Health Big Data Classification Based on KNN Classification Algorithm,” IEEE Access, vol. 8, pp. 28808–28819, 2020, doi: 10.1109/ACCESS.2019.2955754.

C. N. Sirait and S. Mustofa, “Syazili Mustofa | Diagnosis dan Penatalaksanaan Penyakit Arteri Perifer Majority|,” 2021.

C. M. Astorga-Zaragoza, “Observer-Based Monitoring of the Cardiovascular System,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 3, pp. 501–505, Mar. 2020, doi: 10.1109/TCSII.2019.2912906.

K. K. Rekayasa, N. Khoiruzzaman, R. Dias Ramadhani, and A. Junaidi, “Terbit online pada laman web jurnal: http://journal.ittelkom-pwt.ac.id/index.php/dinda JURNAL DINDA Hasil Klasifikasi Algoritma Backpropagation dan K-Nearest Neighbor pada CardiovascularDisease,” 2021. [Online]. Available: https://archive.ics.uci.edu/ml/machine-learning-

H. M. Nawawi, J. J. Purnama, and A. B. Hikmah, “KOMPARASI ALGORITMA NEURAL NETWORK DAN NAÏVE BAYES UNTUK MEMPREDIKSI PENYAKIT JANTUNG,” Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 189–194, Sep. 2019, doi: 10.33480/pilar. V 15i2.669.

Downloads

Published

2024-05-18

Issue

Section

Articles