Variational quantum algorithm for forecasting drugs for corrosion inhibitor

Authors

  • Muhammad Reesa Rosyid Universitas Dian Nuswantoro
  • Muhamad Akrom Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62411/jimat.v1i2.11425

Keywords:

VQA, Corrosion inhibition, Drug, Quantum machine learning

Abstract

This study explores the development and evaluation of a Variational Quantum Algorithm (VQA) for predicting a drug as a corrosion inhibitor, highlighting its advantages over traditional regression models. The VQA leverages quantum-enhanced feature mapping and optimization techniques to capture complex, non-linear relationships within the data. Comparative analysis with AutoRegressive with exogenous inputs (ARX) and Gradient Boosting (GB) models demonstrate the superior performance of VQA across key metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Deviation (MAD). The VQA achieved the lowest RMSE (4.40), MAE (3.33), and MAD (3.17) values, indicating enhanced predictive accuracy and stability. These results underscore the potential of quantum machine learning techniques in advancing predictive modeling capabilities, offering significant improvements in accuracy and consistency over classical methods. The findings suggest that VQA is a promising approach for applications requiring high precision and reliability, paving the way for broader adoption of quantum-enhanced models in material science and beyond.

References

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, H.K. Dipojono, Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds, J Phys Conf Ser, 2673(1), 012014 (2023), https://doi.org/10.1088/1742-6596/2673/1/012014.

M. Akrom, Green corrosion inhibitors for iron alloys: a comprehensive review of integrating data-driven forecasting, density functional theory simulations, and experimental investigation. J Mult Mater Inf, 1(1), 22–37 (2024), https://doi.org/10. 62411/jimat.v1i1.10495

M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

S. Budi, M. Akrom, G.A. Trisnapradika, T. Sutojo, W.A.E. Prabowo, Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets, Scientific Journal of Informatics, 10(2), (2023), https://doi.org/10.15294/sji.v10i2.43929.

M. Akrom, S. Rustad, H.K. Dipojono, Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors, Results in Chemistry 6 (2023) 101126, https://doi.org/10.1016/j. rechem.2023.101126.

M. Akrom, S. Rustad, A.G. Saputro, H.K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors, Comput. Theor. Chem. 1229 (2023) 114307, https://doi.org/10.1016/ J.COMPTC.2023.114307.

M. Schuld, I. Sinayskiy, and F. Petruccione, The quest for a quantum support vector machine. Quantum Information Processing, 13(11), 2567-2586 (2014).

V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow, and J.M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212 (2019).

M. Akrom, S. Rustad, H.K. Dipojono, Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning, Comput. Theor. Chem. 1236 (2024), https://doi.org/10.1016/j.comptc.2024.114599.

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

C. Beltran-Perez, et al., A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine, Int J. Mol. Sci. 23 (9) (2022), https://doi. org/10.3390/ijms23095086.

M. Akrom, S. Rustad, H.K. Dipojono. Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds. Materials Today Communications, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

M. Akrom, S. Rustad, H.K. Dipojono, SMILES-based machine learning enables the prediction of corrosion inhibition capacity, MRS Commun 14 (2024) 379–387, https://doi.org/10.1557/s43579-024-00551-6.

M. Boudalia, R.M. Fernández-Domene, L. Guo, S. Echihi, M.E. Belghiti, A. Zarrouk, A. Bellaouchou, A. Guenbour, and J. García-Antón, Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative, Materials, 16(2), (2023), https://doi.org/10.3390/ma16020678.

W. Herowati, W.A.E. Prabowo, M. Akrom, T. Sutojo, N.A. Setiyanto, A.W. Kurniawan, N.N. Hidayat, and S. Rustad, Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms, KnE Engineering, 68-77 (2024), https://doi.org/10.18502/keg.v6i1.15350.

M. Cerezo et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, Aug. 2021, doi: 10.1038/s42254-021-00348-9.

Chang, H., Liu, Y., & Bai, Y. (2017). "A new multi-category support vector machine algorithm." Soft Computing, 21(6), 1377-1389.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater. Today Commun. 35 (2023) 106402, https://doi.org/10.1016/J. MTCOMM.2023.106402.

M. Akrom, et al., DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl. Surf. Sci. 615 (2023), https://doi.org/10.1016/j. apsusc.2022.156319.

D. Alaminos, M.B. Salas, M.A. Fernández-Gámez, Quantum computing and deep learning methods for GDP growth forecasting, Comput. Econ. (2021) http://dx.doi.org/10.1007/s10614-021-10110-z.

F.J. García-Peñalvo, Desarrollo de estados de la cuestión robustos: Revisiones sistemáticas de literatura, Educ. Knowl. Soc. (EKS) 23 (2022) http://dx.doi.org/10.14201/eks.28600, URL http://repositorio.grial.eu/handle/grial/2568.

W. O’Quinn, S. Mao, Quantum machine learning: Recent advances and outlook, IEEE Wirel. Commun. 27 (3) (2020) 126–131, http://dx.doi.org/10.1109/MWC.001.1900341.

D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement, Int. J. Surg. 8 (5) (2010) 336–341, http://dx.doi.org/10.1016/j.ijsu.2010.02.007.

M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical Guide, vol. 11, 2006, http://dx.doi.org/10.1002/9780470754887.

Y. Huang, H. Lei, X. Li, Q. Zhu, W. Ren, X. Liu, Quantum generative model with variable-depth circuit, Comput. Mater. Contin. 65 (1) (2020) 445–458, http://dx.doi.org/10.32604/cmc.2020.010390.

C. Beltran-Perez, et al., A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine, Int J. Mol. Sci. 23 (9) (2022), https://doi. org/10.3390/ijms23095086.

T.H. Pham, P.K. Le, D.N. Son, A data-driven QSPR model for screening organic corrosion inhibitors for carbon steel using machine learning techniques, RSC Adv. 14 (16) (2024) 11157–11168, https://doi.org/10.1039/d4ra02159b.

Downloads

Published

2024-08-29

Issue

Section

Articles