Development of a Machine Learning Model to Predict the Corrosion Inhibition Ability of Benzimidazole Compounds

Aprilyani Nur Safitri, Gustina Alfa Trisnapradika, Achmad Wahid Kurniawan, Wahyu AJi Eko Prabowo, Muhamad Akrom

Abstract


The purpose of this study is to use quantitative structure-property relationship (QSPR)-based machine learning (ML) to examine the corrosion inhibition capabilities of benzimidazole compounds. The primary difficulty in ML development is creating a model with a high degree of precision so that the predictions are correct and pertinent to the material's actual attributes. We assess the comparison between the extra trees regressor (EXT) as an ensemble model and the decision tree regressor (DT) as a basic model. It was discovered that the EXT model had better predictive performance in predicting the corrosion inhibition performance of benzimidazole compounds based on the coefficient of determination (R2) and root mean square error (RMSE) metrics compared DT model. This method provides a fresh viewpoint on the capacity of ML models to forecast potent corrosion inhibitors.

Full Text:

PDF

References


V.C. Anadebe, V.I. Chukwuike, S. Ramanathan, and R.C. Barik, Cerium-based metal organic framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2- saturated brine solution: XPS, DFT/MD-simulation, and machine learning model prediction, Process Safety and Environmental Protection, 168, 499–512 (2022), https://doi.org/10.1016/J.PSEP.2022.10.016.

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, and H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), https://doi.org/10.1016/J.MTCOMM.2023.106402.

H. Kumar and V. Yadav, Highly efficient and eco-friendly acid corrosion inhibitor for mild steel: Experimental and theoretical study, J Mol Liq, 335, (2021), https://doi.org/10.1016/j.molliq.2021.116220.

M. Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 8(1), 42-48 (2022), https://doi.org/10.30738/st.vol8.no1.a11775.

C. Verma, M.A. Quraishi, and E.E. Ebenso, Quinoline and its derivatives as corrosion inhibitors: A review, Surfaces and Interfaces, 21, 100634 (2020), https://doi.org/10.1016/J.SURFIN.2020.100634.

S.A. Haladu, N.D. Mu’azu, S.A. Ali, A.M. Elsharif, N.A. Odewunmi, and H.M.A. El-Lateef, Inhibition of mild steel corrosion in 1 M H2SO4 by a gemini surfactant 1,6-hexyldiyl-bis-(dimethyldodecylammonium bromide): ANN, RSM predictive modeling, quantum chemical and MD simulation studies, J Mol Liq, 350, 118533 (2022), https://doi.org/10.1016/J.MOLLIQ.2022.118533.

M. Akrom and T. Sutojo, Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi Pirimidin Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors, Eksergi, 20(2), 107-111 (2023), https://doi.org/10.31315/e.v20i2.9864.

F.E. Abeng and V.C. Anadebe, Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution, Comput Theor Chem, 1229, 114334 (2023), https://doi.org/10.1016/J.COMPTC.2023.114334.

M. Akrom, S. Rustad, and H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99,(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, H. Lgaz, O. Dagdag, E.M. Sherif, A.A. Alrashdi, E.D. Akpan, H. Lee, and E.E. Ebenso, Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies, Arabian Journal of Chemistry, 15(7), 103870 (2022), https://doi.org/10.1016/J.ARABJC.2022.103870.

R.L. Camacho-Mendoza, L. Feria, L.Á. Zárate-Hernández, J.G. Alvarado-Rodríguez, and J. Cruz-Borbolla, New QSPR model for prediction of corrosion inhibition using conceptual density functional theory, J Mol Model, 28(8), (2022), https://doi.org/10.1007/s00894-022-05240-6.

H. Lachhab, N. Benzbiria, A. Titi, S. Echihi, M.E. Belghiti, Y. Karzazi, A. Zarrouk, R. Touzani, C. Jama, and F. Bentiss, Detailed experimental performance of two new pyrimidine-pyrazole derivatives as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond breaking upon adsorption, Colloids Surf A Physicochem Eng Asp, 680, 132649 (2024), https://doi.org/10.1016/j.colsurfa.2023.132649.

M. Boudalia, R.M. Fernández-Domene, L. Guo, S. Echihi, M.E. Belghiti, A. Zarrouk, A. Bellaouchou, A. Guenbour, and J. García-Antón, Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative, Materials, 16(2), (2023), https://doi.org/10.3390/ma16020678.

M. Akrom, S. Rustad, and H.K. Dipojono, Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors, Results Chem, 6, 101126 (2023), https://doi.org/10.1016/J.RECHEM.2023.101126.

L.B. Coelho, D. Zhang, Y.V. Ingelgem, D. Steckelmacher, A. Nowé, and H. Terryn, Reviewing machine learning of corrosion prediction in a data-oriented perspective, npj Materials Degradation, 6(1), (2022), https://doi.org/10.1038/s41529-022-00218-4.

T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, E.D. Akpan, H. Lee, H. Lgaz, C. Verma, L. Guo, S. Kaya, and E.E. Ebenso, Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids, Comput Mater Sci, 214, (2022), https://doi.org/10.1016/j.commatsci.2022.111753.

M. Akrom, S. Rustad, A.G. Saputro, and H.K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors, Comput Theor Chem, 1229, 114307 (2023), https://doi.org/10.1016/J.COMPTC.2023.114307.

M. Akrom, S. Rustad, and H.K. Dipojono, Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning, Comp and Theoretical Chem, 1236, 114599 (2024), https://doi.org/10.1016/j.comptc.2024.114599.

C.T. Ser, P. Žuvela, and M.W. Wong, Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships, Appl Surf Sci, 512, 145612 (2020), https://doi.org/10.1016/J.APSUSC.2020.145612.

T.W. Quadri, L.O. Olasunkanmi, E.D. Akpan, O.E. Fayemi, H. Lee, H. Lgaz, C. Verma, L. Guo, S. Kaya, and E.E. Ebenso, Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors, Mater Today Commun, 30, 103163 (2022), https://doi.org/10.1016/J.MTCOMM.2022.103163.

C. Beltran-Perez, A.A.A. Serrano, G. Solís-Rosas, A. Martínez-Jiménez, R. Orozco-Cruz, A. Espinoza-Vázquez, and A. Miralrio, A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine, Int J Mol Sci, 23(9), (2022), https://doi.org/10.3390/ijms23095086.

M. Akrom, S. Rustad, and H.K. Dipojono, Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds, Mater Today Quantum, (2024), https://doi.org/10.1016/j.mtquan.2024.100007.

L. Li et al., “The discussion of descriptors for the QSAR model and molecular dynamics simulation of benzimidazole derivatives as corrosion inhibitors,” Corrosion Science, vol. 99, p. 76–88, Oct 2015, doi: 10.1016/j.corsci.2015.06.003.

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, and H.K. Dipojono, Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds, J Phys Conf Ser, 2673 (1), 012014 (2023), https://doi.org/10.1088/1742-6596/2673/1/012014.

S. Budi, M. Akrom, H. Al Azies, U. Sudibyo, T. Sutojo, G.A. Trisnapradika, A.N. Safitri, A. Pertiwi, and S. Rustad, Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as Corrosion Inhibitors, KnE Engineering, 78-87 (2024), https://doi.org/10.18502/keg.v6i1.15351.

M. Akrom, A.G. Saputro, A.L. Maulana, A. Ramelan, A. Nuruddin, S. Rustad, and H.K. Dipojono, “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl Surf Sci, 615, 156319 (2023), https://doi.org/10.1016/j.apsusc.2022.156319.

T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, H. Lgaz, O. Dagdag, E.M. Sherif, E.D. Akpan, H. Lee, and E.E. Ebenso, Predicting protection capacities of pyrimidine-based corrosion inhibitors for mild steel/HCl interface using linear and nonlinear QSPR models, J Mol Model, 28, (2022), https://doi.org/10.1007/s00894-022-05245-1.

N. Arrousse, R. Salim, Y. Kaddouri, A. Zarrouk, D. Zahri, F. El Hajjaji, R. Touzani, M. Taleb, and S. Jodeh, The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies, Arabian Journal of Chemistry, 13(7), 5949–5965 (2020), https://doi.org/10.1016/j.arabjc.2020.04.030.

W. Herowati, W.A.E. Prabowo, M. Akrom, T. Sutojo, N.A. Setiyanto, A.W. Kurniawan, N.N. Hidayat, and S. Rustad, Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms, KnE Engineering, 68-77 (2024), https://doi.org/10.18502/keg.v6i1.15350.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, and H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), https://doi.org/10.1016/J.MTCOMM.2023.106402.

M. Akrom, S. Rustad, and H.K. Dipojono, Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds, Mater Today Comm, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

M. Akrom, S. Rustad, and H.K. Dipojono, SMILES-based machine learning enables the prediction of corrosion inhibition capacity, MRS Comm, (2024), https://doi.org/10.1557/s43579-024-00551-6.




DOI: https://doi.org/10.62411/jimat.v1i1.10464

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Indexed by: 

           



Published by: 

Journal of Multiscale Materials Informatics (JIMAT) published by Universitas Dian Nuswantoro, Semarang, Indonesia, and collaborates with Research Center for Materials Informatics.

This journal is licensed by Creative Commons Attribution 4.0 International License.

 
 
 
Barcode 3047-5724