ANALISIS KOMPARASI ALGORITMA KLASIFIKASI UNTUK MENANGANI DATA TIDAK SEIMBANG PADA DATA KEBAKARAN HUTAN
DOI:
https://doi.org/10.33633/tc.v14i4.992Abstract
Untuk menghasilkan hasil yang maksimal di dalam proses klasifikasi data harus memiliki distribusi yang sama dengan data pelatihan. Namun, kenyataannya data seperti ini, tidak selalu ditemukan banyak juga data yang distribusinya tidak sama, dimana satu kelas mungkin diwakili oleh data dengan jumlah yang besar, sementara kelas yang lain diwakili oleh hanya beberapa.  Algoritma klasifikasi data mining banyak yang dapat digunakan untuk menangani data tidak seimbang, maka dari itu perlu dilakukan komparasi untuk mengetahui seberapa tinggi tingkat akurasi dari masing-masing algoritma yang ada. Algoritma yang digunakan adalah K-Means + C4.5, K-Means + Naïve Bayes, K-Means + Random Forest dan K-Means + Neural Network. Dataset terdiri dari dua kombinasi, yang terdiri dari variabel meteorologi dan fire weather index (FWI) untuk memprediksi ukuran kebakaran hutan. Hasil dari proses klasifikasi dievaluasi dengan menggunakan cross validation, confusion matrix, dan T-Test Kata Kunci : Algoritma C4.5, Naïve Bayes, Random Forest, Neural Network, K-Means, Data tidak seimbang, Data Mining.Downloads
Published
Issue
Section
License
Copyright (c) 2015 Castaka Agus Sugianto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/