Transfer Learning untuk Klasifikasi Penyakit dan Hama Padi Menggunakan MobileNetV2
DOI:
https://doi.org/10.33633/tc.v22i3.8516Keywords:
Convolutional Neural Network, Transfer learning, Penyakit tanaman padi, Hama, DatasetAbstract
Tanaman padi memegang peranan penting untuk ketersediaan pangan di indonesia. Namun, banyak faktor yang dapat mempengaruhi panen pada tanaman padi, salah satunya adalah penyakit dan hama pada tanaman padi. Keterlambatan penanganan pada penyakit dan hama tanaman padi bisanya terjadi karena keterlambatan diagnosis penyakit dan hama tanaman padi, apalagi pada daerah terpencil yang memiliki keterbatasan akses internet dan komputasi. Oleh karena itu proses klasifikasi penyakit dan hama pada tanaman padi secara otomatis yang dapat di implementasikan pada perangkat dengan daya sumber yang terbatas, seperti perangkat seluler sangat dibutuhkan. Penelitian ini membandingkan lima arsitektur Transfer Learning yaitu MobileNet V2, NasNet Mobile, EfficientNet B7, Inception V3, VGG 16 dan model dengan simple CNN. Penelitian ini menggunakan dataset Rahman yang berisikan 5 penyakit, 3 hama dan 1 tanaman padi sehat. Setiap data akan melewati tahap preprocessing dan augmentasi. MobileNet V2 memiliki jumlah parameter dan performa yang cukup baik dalam mengklasifikasi penyakit tanaman padi dengan jumlah parameter yaitu 2.269.513, accuracy sebesar 96%, precision sebesar96%, recall sebesar96%, specificity sebesar 99%, dan f1-score sebesar 96%.References
Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, and Galih Wasis Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1216–1222, Dec. 2021, doi: 10.29207/resti.v5i6.3607.
O. V. Putra, M. N. Annafii, T. Harmini, and N. Trisnaningrum, “Semantic Segmentation of Rice Leaf Blast Disease using Optimized U-Net,” Proceeding Int. Conf. Comput. Eng. Netw. Intell. Multimedia, CENIM 2022, pp. 43–48, 2022, doi: 10.1109/CENIM56801.2022.10037550.
E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” J. Ilm. SINUS, vol. 19, no. 1, p. 75, 2021, doi: 10.30646/sinus.v19i1.526.
R. R. Patil and S. Kumar, “Rice-Fusion: A Multimodality Data Fusion Framework for Rice Disease Diagnosis,” IEEE Access, vol. 10, pp. 5207–5222, 2022, doi: 10.1109/ACCESS.2022.3140815.
M. J. Hasan, S. Mahbub, M. S. Alom, and M. Abu Nasim, “Rice Disease Identification and Classification by Integrating Support Vector Machine with Deep Convolutional Neural Network,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, vol. 2019, no. Icasert, pp. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934568.
O. Virgantara, N. Trisnaningrum, N. Sylvia, and A. Toto, “HiT-LIDIA?: A Framework for Rice Leaf Disease Classification using Ensemble and Hierarchical Transfer Learning,” vol. 13, no. 3, pp. 196–207, 2022.
R. and I. T. Association of Knowledge, Ja?mi?at Ibn Zuhr. E?cole nationale des sciences applique?es d’Agadir, and Institute of Electrical and Electronics Engineers, Proceedings of 2019 International Conference of Computer Science and Renewable Energies (ICCSRE)?: 2019 July 22-24.
S. Ray, A. Kundu, T. Na, Institute of Electrical and Electronics Engineers. Kolkata Section, and Institute of Electrical and Electronics Engineers, CALCON 2020?: 2020 IEEE Calcutta Conference?: proceedings?: 28-29 February, 2020, Kolkata, India.
A. Syaikhul, M. Aziz, and O. Virgantara, “Disease Detection in Rice Leaf Plants Using Convolutional Neural Network ( Cnn ) Method,” 2021.
C. R. Rahman et al., “Identification and recognition of rice diseases and pests using convolutional neural networks,” Biosyst. Eng., vol. 194, pp. 112–120, 2020, doi: 10.1016/j.biosystemseng.2020.03.020.
R. Indraswari, R. Rokhana, and W. Herulambang, “Melanoma image classification based on MobileNetV2 network,” in Procedia Computer Science, 2021, vol. 197, pp. 198–207, doi: 10.1016/j.procs.2021.12.132.
K. Rahouma and A. Salama, “Knee Images Classification using Transfer Learning,” in Procedia Computer Science, 2021, vol. 194, pp. 9–21, doi: 10.1016/j.procs.2021.10.055.
T. Selim, I. Elkabani, and M. A. Abdou, “Students Engagement Level Detection in Online e-Learning Using Hybrid EfficientNetB7 Together With TCN, LSTM, and Bi-LSTM,” IEEE Access, vol. 10, no. August, pp. 99573–99583, 2022, doi: 10.1109/ACCESS.2022.3206779.
A. Bari, T. Saini, and A. Kumar, “Fire detection using deep transfer learning on surveillance videos,” Proc. 3rd Int. Conf. Intell. Commun. Technol. Virtual Mob. Networks, ICICV 2021, no. Icicv, pp. 1061–1067, 2021, doi: 10.1109/ICICV50876.2021.9388485.
S. Sharma and K. Guleria, “A Deep Learning based model for the Detection of Pneumonia from Chest X-Ray Images using VGG-16 and Neural Networks,” Procedia Comput. Sci., vol. 218, pp. 357–366, 2023, doi: 10.1016/j.procs.2023.01.018.
D. Saranyaraj, M. Manikandan, and S. Maheswari, “A deep convolutional neural network for the early detection of breast carcinoma with respect to hyper- parameter tuning,” Multimed. Tools Appl., vol. 79, no. 15–16, pp. 11013–11038, 2020, doi: 10.1007/s11042-018-6560-x.
W. Sae-Lim, W. Wettayaprasit, and P. Aiyarak, “Convolutional Neural Networks Using MobileNet for Skin Lesion Classification,” JCSSE 2019 - 16th Int. Jt. Conf. Comput. Sci. Softw. Eng. Knowl. Evol. Towar. Singul. Man-Machine Intell., pp. 242–247, 2019, doi: 10.1109/JCSSE.2019.8864155.
M. Fikri, N. Syahbani, and N. G. Ramadhan, “Klasifikasi Gerakan Yoga dengan Model Convolutional Neural Network Menggunakan Framework Streamlit,” vol. 7, pp. 509–519, 2023, doi: 10.30865/mib.v7i1.5520.
M. Arbane, R. Benlamri, Y. Brik, and M. Djerioui, “Transfer Learning for Automatic Brain Tumor Classification Using MRI Images,” 2020 2nd Int. Work. Human-Centric Smart Environ. Heal. Well-Being, IHSH 2020, pp. 210–214, 2021, doi: 10.1109/IHSH51661.2021.9378739.
Universiti Teknologi PETRONAS. Computer and Information Sciences Department and Institute of Electrical and Electronics Engineers, 2020 International Conference on Computational Intelligence (ICCI)?: proceedings?: first virtual conference by Computer and Information Sciences Department (CISD), Universiti Teknologi PETRONAS (UTP), 8th-9th October 2020.
E. Villain, G. M. Mattia, F. Nemmi, P. Peran, X. Franceries, and M. V. Le Lann, “Visual interpretation of CNN decision-making process using Simulated Brain MRI,” in Proceedings - IEEE Symposium on Computer-Based Medical Systems, Jun. 2021, vol. 2021-June, pp. 515–520, doi: 10.1109/CBMS52027.2021.00102.
S. D. Deb, R. K. Jha, K. Jha, and P. S. Tripathi, “A multi model ensemble based deep convolution neural network structure for detection of COVID19,” Biomed. Signal Process. Control, vol. 71, Jan. 2022, doi: 10.1016/j.bspc.2021.103126.
Institute of Electrical and Electronics Engineers, 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM).
Institute of Electrical and Electronics Engineers. Turkey Section. and Institute of Electrical and Electronics Engineers, HORA 2020?: 2nd International Congress on Human-Computer Interaction, Optimization and Robotic Applications?: proceedings?: June 26-27, 2020, Turkey.
S. Sharma, K. Guleria, S. Tiwari, and S. Kumar, “A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans,” Meas. Sensors, vol. 24, Dec. 2022, doi: 10.1016/j.measen.2022.100506.
K. Shankar, Y. Zhang, Y. Liu, L. Wu, and C. H. Chen, “Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification,” IEEE Access, vol. 8, pp. 118164–118173, 2020, doi: 10.1109/ACCESS.2020.3005152.
F. F. Firdaus, H. A. Nugroho, and I. Soesanti, “Deep Neural Network with Hyperparameter Tuning for Detection of Heart Disease,” in Proceedings - 2021 IEEE Asia Pacific Conference on Wireless and Mobile, APWiMob 2021, Apr. 2021, pp. 59–65, doi: 10.1109/APWiMob51111.2021.9435250.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/