Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank
DOI:
https://doi.org/10.33633/tc.v22i1.7302Abstract
Nasabah adalah salah satu aset paling berharga dari sebuah bisnis perbankan. Mereka adalah ujung tombak pengguna produk yang nantinya memberikan keuntungan bagi bank, terutama pada produk kartu kredit. Penelitian ini bertujuan untuk mengetahui nasabah mana sajakah yang berpotensi untuk meninggalkan layanan kartu kredit dari sebuah bank. Pada penelitian sebelumnya belum ada yang melakukan analisis perbandingan algoritma machine learning dengan berbagai macam tahapan preprocessing untuk memprediksi potensi hilangnya nasabah bank. Penelitian ini melakukan analisis perbandingan algoritma machine learning dengan kombinasi tahapan preprocessing untuk memprediksi potensi hilangnya nasabah bank. Analisis ini penting untuk pemilihan algoritma yang paling cocok untuk prediksi potensi hilangnya nasabah bank. Pada tahapan preprocessing diterapkan dimensionality reduction dan feature selection menggunakan metode Variance threshold dan Correlation coefficient. Metode klasifikasi yang digunakan adalah Logistic regression (LR), Decision tree (DT), dan Naïve Bayes (NB). Hasil tertinggi dari ketiga metode tersebut adalah Decision tree yang mampu memiliki nilai F1 Score sebesar 96% dan nilai akurasi mencapai 93%. Logistic regression dan Naïve Bayes berada pada urutan kedua dan ketiga setelah decision tree. Tahapan data preprocessing tidak memberikan pengaruh yang signifikan pada nilai F1 Score dan akurasi.References
A. K. Ahmad, A. Jafar, and K. Aljoumaa, “Customer churn prediction in telecom using machine learning in big data platform,” J. Big Data, vol. 6, no. 1, pp. 1–24, Dec. 2019, doi: 10.1186/S40537-019-0191-6/TABLES/4.
H. ANNUR, “PREDIKSI BERHENTINYA NASABAH KARTU KREDIT MENGGUNAKAN ALGORITMA DECISION TREE BERBASIS BACKWARD ELIMINATION”.
I. Brandusoiu, G. Toderean, and H. Beleiu, “Methods for churn prediction in the pre-paid mobile telecommunications industry,” IEEE Int. Conf. Commun., vol. 2016-August, pp. 97–100, Aug. 2016, doi: 10.1109/ICCOMM.2016.7528311.
Y. He, Z. He, and D. Zhang, “A study on prediction of customer churn in fixed communication network based on data mining,” 6th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2009, vol. 1, pp. 92–94, 2009, doi: 10.1109/FSKD.2009.767.
A. Idris, A. Khan, and Y. S. Lee, “Genetic programming and Adaboosting based churn prediction for telecom,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., pp. 1328–1332, 2012, doi: 10.1109/ICSMC.2012.6377917.
M. Makhtar, S. Nafis, M. A. Mohamed, M. K. Awang, M. N. A. Rahman, and M. M. Deris, “Churn classification model for local telecommunication company based on rough set theory,” J. Fundam. Appl. Sci., vol. 9, no. 6S, p. 854, Feb. 2018, doi: 10.4314/JFAS.V9I6S.64.
J. Burez and D. Van den Poel, “Handling class imbalance in customer churn prediction,” Expert Syst. Appl., vol. 36, no. 3, pp. 4626–4636, Apr. 2009, doi: 10.1016/J.ESWA.2008.05.027.
V. Jain, J. Sharma, K. Singhal, and A. Phophalia, “Exponentially Weighted Random Forest,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11941 LNCS, pp. 170–178, 2019, doi: 10.1007/978-3-030-34869-4_19.
M. C. Aksama and A. Wahyuniati, “Prediksi Churn Nasabah Bank Menggunakan Klasifikasi Naïve Bayes dan ID3”.
T. T. Hanif, A. Adiwijaya, and S. Al-Faraby, “Analisis Churn Prediction Pada Data Pelanggan Pt. Telekomunikasi Menggunakan Underbagging Dan Logistic Regression,” eProceedings Eng., vol. 4, no. 2, 2017.
A. Chaunan, “Credit Card customers | Kaggle,” kaggle, 2021. https://www.kaggle.com/datasets/whenamancodes/credit-card-customers-prediction (accessed Dec. 23, 2022).
C. Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic regression analysis and reporting,” J. Educ. Res., vol. 96, no. 1, pp. 3–14, 2002, doi: 10.1080/00220670209598786.
L. Rokach and O. Maimon, “Decision Trees,” Data Min. Knowl. Discov. Handb., pp. 165–192, May 2006, doi: 10.1007/0-387-25465-X_9.
D. A. Setiawan, R. Halilintar, and L. S. Wahyuniar, “Penerapan Metode Naive Bayes Untuk Klasifikasi Penentuan Penerima Bantuan PKH,” in Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 2021, vol. 5, no. 2, pp. 249–254.
Vikramkumar, V. B, and Trilochan, “
Downloads
Published
Issue
Section
License
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---