Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank
DOI:
https://doi.org/10.33633/tc.v22i1.7302Abstract
Nasabah adalah salah satu aset paling berharga dari sebuah bisnis perbankan. Mereka adalah ujung tombak pengguna produk yang nantinya memberikan keuntungan bagi bank, terutama pada produk kartu kredit. Penelitian ini bertujuan untuk mengetahui nasabah mana sajakah yang berpotensi untuk meninggalkan layanan kartu kredit dari sebuah bank. Pada penelitian sebelumnya belum ada yang melakukan analisis perbandingan algoritma machine learning dengan berbagai macam tahapan preprocessing untuk memprediksi potensi hilangnya nasabah bank. Penelitian ini melakukan analisis perbandingan algoritma machine learning dengan kombinasi tahapan preprocessing untuk memprediksi potensi hilangnya nasabah bank. Analisis ini penting untuk pemilihan algoritma yang paling cocok untuk prediksi potensi hilangnya nasabah bank. Pada tahapan preprocessing diterapkan dimensionality reduction dan feature selection menggunakan metode Variance threshold dan Correlation coefficient. Metode klasifikasi yang digunakan adalah Logistic regression (LR), Decision tree (DT), dan Naïve Bayes (NB). Hasil tertinggi dari ketiga metode tersebut adalah Decision tree yang mampu memiliki nilai F1 Score sebesar 96% dan nilai akurasi mencapai 93%. Logistic regression dan Naïve Bayes berada pada urutan kedua dan ketiga setelah decision tree. Tahapan data preprocessing tidak memberikan pengaruh yang signifikan pada nilai F1 Score dan akurasi.References
A. K. Ahmad, A. Jafar, and K. Aljoumaa, “Customer churn prediction in telecom using machine learning in big data platform,” J. Big Data, vol. 6, no. 1, pp. 1–24, Dec. 2019, doi: 10.1186/S40537-019-0191-6/TABLES/4.
H. ANNUR, “PREDIKSI BERHENTINYA NASABAH KARTU KREDIT MENGGUNAKAN ALGORITMA DECISION TREE BERBASIS BACKWARD ELIMINATION”.
I. Brandusoiu, G. Toderean, and H. Beleiu, “Methods for churn prediction in the pre-paid mobile telecommunications industry,” IEEE Int. Conf. Commun., vol. 2016-August, pp. 97–100, Aug. 2016, doi: 10.1109/ICCOMM.2016.7528311.
Y. He, Z. He, and D. Zhang, “A study on prediction of customer churn in fixed communication network based on data mining,” 6th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2009, vol. 1, pp. 92–94, 2009, doi: 10.1109/FSKD.2009.767.
A. Idris, A. Khan, and Y. S. Lee, “Genetic programming and Adaboosting based churn prediction for telecom,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., pp. 1328–1332, 2012, doi: 10.1109/ICSMC.2012.6377917.
M. Makhtar, S. Nafis, M. A. Mohamed, M. K. Awang, M. N. A. Rahman, and M. M. Deris, “Churn classification model for local telecommunication company based on rough set theory,” J. Fundam. Appl. Sci., vol. 9, no. 6S, p. 854, Feb. 2018, doi: 10.4314/JFAS.V9I6S.64.
J. Burez and D. Van den Poel, “Handling class imbalance in customer churn prediction,” Expert Syst. Appl., vol. 36, no. 3, pp. 4626–4636, Apr. 2009, doi: 10.1016/J.ESWA.2008.05.027.
V. Jain, J. Sharma, K. Singhal, and A. Phophalia, “Exponentially Weighted Random Forest,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11941 LNCS, pp. 170–178, 2019, doi: 10.1007/978-3-030-34869-4_19.
M. C. Aksama and A. Wahyuniati, “Prediksi Churn Nasabah Bank Menggunakan Klasifikasi Naïve Bayes dan ID3”.
T. T. Hanif, A. Adiwijaya, and S. Al-Faraby, “Analisis Churn Prediction Pada Data Pelanggan Pt. Telekomunikasi Menggunakan Underbagging Dan Logistic Regression,” eProceedings Eng., vol. 4, no. 2, 2017.
A. Chaunan, “Credit Card customers | Kaggle,” kaggle, 2021. https://www.kaggle.com/datasets/whenamancodes/credit-card-customers-prediction (accessed Dec. 23, 2022).
C. Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic regression analysis and reporting,” J. Educ. Res., vol. 96, no. 1, pp. 3–14, 2002, doi: 10.1080/00220670209598786.
L. Rokach and O. Maimon, “Decision Trees,” Data Min. Knowl. Discov. Handb., pp. 165–192, May 2006, doi: 10.1007/0-387-25465-X_9.
D. A. Setiawan, R. Halilintar, and L. S. Wahyuniar, “Penerapan Metode Naive Bayes Untuk Klasifikasi Penentuan Penerima Bantuan PKH,” in Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 2021, vol. 5, no. 2, pp. 249–254.
Vikramkumar, V. B, and Trilochan, “
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/