Sistem Deteksi Pra-Kanker Serviks dengan Pengolahan Citra Hasil Inspeksi Visual Asam Asetat
DOI:
https://doi.org/10.33633/tc.v20i2.4285Keywords:
Kanker Serviks, IVA, AEZ, SSK, Citra DigitalAbstract
Kanker serviks merupakan penyakit mematikan nomor satu di Indonesia dengan angka kematian tertinggi pada wanita. Berbagai upaya untuk mengurangi angka kematian wanita Indonesia akibat kanker serviks telah banyak dilakukan, salah satunya dengan melakukan screening kanker menggunakan tes inspeksi visual asam asetat (tes IVA). Tes ini merupakan upaya screening untuk mengetahui pra-cancer atau invasive cancer pada kanker serviks dengan memunculkan Acetowhite Epithelium Zone (AEZ) yang dapat dikategorikan sebagai lesi IVA positif maupun lesi jinak. Umumnya, AEZ dapat dilihat dengan kasat mata yang memerlukan keahlian khusus sehingga hasil pengamatannya akan bersifat subjektif dan bergantung pada pengalaman operator. Selain itu, utilitas pemeriksaan kanker serviks ini pun dinilai terbatas dikarenakan sedikitnya jumlah operator ahli yang terlatih. Pada penelitian ini, lesi pra-kanker serviks dikuantifikasi dengan pengolahan citra digital. Citra yang digunakan adalah citra hasil inspeksi visual asam asetat atau citra area mulut rahim yang telah diolesi oleh asam asetat dan dinyatakan terdapat sambungan skuamosa kolumnar (SSK) positif. Kuantifikasi citra lesi pra-kanker serviks dilakukan dengan menggunakan metode standarisasi karakter warna citra pada RGB dan HSV. Pengujian system deteksi lesi pra-kanker serviks diukur dengan menggunakan parameter akurasi, sensitivitas dan spesifisitas terhadap pengaruh tingkat kecerahan dan mean filter. Melalui penelitian ini didapatkan klasifikasi citra tes IVA beserta area lesi IVA positif yang optimal dengan tingkat akurasi 81%, nilai sensitivitas 78% dan nilai spesifisitas 84%. Performa system sangat dipengaruhi oleh ketajaman dan efek pencahayaan pada citra, baik itu intensitas cahaya, efek bayangan, maupun efek pantulan cahaya.References
Badan Penelitian dan Pengembangan Kesehatan, “Riset Kesehatan Dasar 2013,” Ris. Kesehat. Dasar 2013, 2013.
L. Lembahmanah, “Analisa Faktor Pendidikan pada Wanita Peserta Program Penapisan Kanker Leher Rahim dengan Pendekatan ‘See and Treat’: Untuk Deteksi Lesi Prakanker dan Pengobatan dengan Terapi Beku,” Textb. Cancer Epidemiol., 2009.
S. Mustafa, S. Adeshina, M. Dauda, and W. Soboyejo, “Classification of cervical cancer tissues using a novel low cost methodology for effective screening in rural settings,” in Proceedings of the 11th International Conference on Electronics, Computer and Computation, ICECCO 2014, 2014.
J. Liu, L. Li, and L. Wang, “Acetowhite region segmentation in uterine cervix images using a registered ratio image,” Comput. Biol. Med., 2018.
A. Kanitkar, R. Kulkarni, V. Joshi, Y. Karwa, S. Gindi, and G. Kale, “Automatic Detection of Cervical Region from VIA and VILI Images using Machine Learning,” in Proceedings - 22nd IEEE International Conference on Computational Science and Engineering and 17th IEEE International Conference on Embedded and Ubiquitous Computing, CSE/EUC 2019, 2019.
G. Sapiro et al., “Image processing and machine learning techniques to automate diagnosis of Lugol’s iodine cervigrams for a low-cost point-of-care digital colposcope,” 2018.
J. K. Bae et al., “Quantitative screening of cervical cancers for low-resource settings: Pilot study of smartphone-based endoscopic visual inspection after acetic acid using machine learning techniques,” JMIR mHealth uHealth, 2020.
L. Hu et al., “An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening,” J. Natl. Cancer Inst., 2019.
L. Hu et al., “Deep learning-based image evaluation for cervical precancer screening with a smartphone targeting low resource settings - Engineering approach,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020.
V. Kudva, K. Prasad, and S. Guruvare, “Detection of Specular Reflection and Segmentation of Cervix Region in Uterine Cervix Images for Cervical Cancer Screening,” IRBM, 2017.
V. Kudva and K. Prasad, “Pattern classification of images from acetic acid– based cervical cancer screening: A review,” Critical Reviews in Biomedical Engineering. 2018.
N. Thendral and D. Lakshmi, “Performance comparison of SVM classifier based on kernel functions in colposcopic image segmentation for cervical cancer,” in Lecture Notes in Computational Vision and Biomechanics, 2019.
K. E. Quinley et al., “Use of mobile telemedicine for cervical cancer screening,” J. Telemed. Telecare, 2011.
C. Gallay et al., “Cervical cancer screening in low-resource settings: A smartphone image application as an alternative to colposcopy,” Int. J. Womens. Health, 2017, doi: 10.2147/IJWH.S136351.
B. D. Grant et al., “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One, 2019, doi: 10.1371/journal.pone.0211045.
C. Millien, M. C. Jean-Baptiste, G. Manite, and D. Levitz, “Remote quality assurance in cervical cancer screening in low resource settings using a handheld smartphone-based colposcope,” in Optics and Biophotonics in Low-Resource Settings, 2015.
S. A. Monsur, S. A. Adeshina, S. Sud, and W. O. Soboyejo, “A mobile-based image analysis system for cervical cancer detection,” in 2017 13th International Conference on Electronics, Computer and Computation, ICECCO 2017, 2018.
S. Drishti et al., “Feasibility of implementing cervical cancer screening program using smartphone imaging as a training aid for nurses in rural India,” Public Health Nurs., 2018.
R. Bagga et al., “Feasibility of Using Mobile Smartphone Camera as an Imaging Device,” J Postgr. Med Edu Res, 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Hilman Fauzi, Galih Surya, Rita Magdalena, Ali Budi Harsono, Tauhid Nur Azhar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---