Optimasi Fungsi Multimodal Menggunakan Flower Pollination Algorithm Dengan Teknik Clustering
DOI:
https://doi.org/10.33633/tc.v19i2.3216Keywords:
Optimasi fungsi multimodal, Flower Pollination Algorithm, Clustering, FPAC.Abstract
Optimasi fungsi multimodal merupakan permasalahan yang banyak dijumpai dalam bidang teknik, sains, ilmu sosial dan ekonomi. Tujuan utama dari permasalahan multimodal adalah untuk melokalisir semua solusi yang tersedia baik optimum lokal maupun optimum global dalam sekali running. Flower Pollination Algorithm yang umum digunakan untuk optimasi global perlu dimodifikasi dan dikembangkan agar dapat menyelesaiakan tantangan dalam optimasi fungsi multimodal. Pada penelitian ini kami mengkombinasikan Flower Pollination Algorithm dengan teknik Clustering untuk mengoptimasi fungsi multimodal. Dalam uji coba terhadap 5 fungsi bencharmk multimodal yaitu Second minima, Six hump camel back, Rastrigin, Vincent dan Shubert diperoleh hasil bahwa metode yang disusulkan (FPAC) sukses menemukan semua solusi dari masing-masing fungsi multimodal dalam sekali running baik untuk kasus dimensi rendah maupun dimensi tinggi.References
C. Yue, B. Qu, K. Yu, J. Liang, and X. Li, “A novel scalable test problem suite for multimodal multiobjective optimization,†Swarm Evol. Comput., vol. 48, no. March, pp. 62–71, 2019.
X. Lin, W. Luo, and P. Xu, “Differential evolution for multimodal optimization with species by nearest-better clustering,†IEEE Trans. Cybern., 2019.
S. I. A. Idrus, H. Syahputra, and M. Firdaus, “Modification of species-based differential evolution for multimodal optimization,†AIP Conf. Proc., vol. 1691, no. 1, p. 030012, 2015.
X. Yang, Nature-Inspired Optimization Algorithms, 1st ed. Elsevier, 2014.
N. Nekouie and M. Yaghoobi, “A new method in multimodal optimization based on firefly algorithm,†Artif. Intell. Rev., vol. 46, no. 2, pp. 267–287, 2016.
J. Gálvez, E. Cuevas, and O. Avalos, “Flower pollination algorithm for multimodal optimization,†Int. J. Comput. Intell. Syst., vol. 10, no. 1, pp. 627–646, 2017.
N. Kushwaha and M. Pant, “Modified particle swarm optimization for multimodal functions and its application,†Multimed. Tools Appl., vol. 78, no. 17, pp. 23917–23947, 2019.
K. A. Sidarto, A. Kania, and N. Sumarti, “Finding multiple solutions of multimodal optimization using spiral optimization algorithm with clustering,†Mendel, vol. 23, no. 1, pp. 95–102, 2017.
X. Yang, “Flower Pollination Algorithm for Global Optimization,†in International conference on unconventional computing and natural computation, Berlin, Heidelberg: Springer, 2012, pp. 240–249.
X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark Functions for CEC ’ 2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization,†Tech. Report, Evol. Comput. Mach. Learn. Group, RMIT Univ. Aust., pp. 1–10, 2016.
R. N. Mantegna, “Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes,†Phys. Rev. E, vol. 49, no. 5, p. 4677, 1994.
R. Hadi, “Optimasi Fitur dalam Klasterisasi Mahasiswa Program Studi Sistem Informasi Dengan Algoritma Genetik,†Techno.COM, vol. 16, no. 3, pp. 249–255, 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Rahmat Karim

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/