Seleksi Fitur Dengan Information Gain Untuk Meningkatkan Deteksi Serangan DDoS menggunakan Random Forest
DOI:
https://doi.org/10.33633/tc.v19i1.2860Keywords:
Seleksi fitur, DDoS, Information Gain, Random Forest, CICIDS-2017Abstract
Tantangan deteksi serangan saat ini adalah jumlah trafik yang besar dan beragam serta hadir jenis serangan baru. Sehingga diperlukan teknik baru untuk meningkatkan performa deteksi. Dengan pesatnya perkembangan teknologi layanan komunikasi, menghasilkan trafik dengan informasi yang beragam. Pada dasarnya tidak semua informasi pada trafik jaringan digunakan untuk mendeteksi serangan seperti DDoS. Penelitian ini bertujuan meningkatkan performa Random Forest dalam mendeteksi serangan DDoS dengan seleksi fitur menggunakan teknik Information Gain. Berdasarkan hasil eksperimen diperoleh bahwa teknik yang diusulkan mampu meningkatkan akurasi deteksi DDoS hingga 99.99% dengan tingkat alarm palsu 0.001Downloads
Published
Issue
Section
License
Copyright (c) 2020 kurniabudi kurniabudi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---