Text Mining Untuk Analisis Sentimen Review Film Menggunakan Algoritma K-Means
DOI:
https://doi.org/10.33633/tc.v16i1.1263Abstract
Kemudahan manusia didalam menggunakan website mengakibatkan bertambahnya dokumen teks yang berupa pendapat dan informasi. Dalam waktu yang lama dokumen teks akan bertambah besar. Text mining merupakan salah satu teknik yang digunakan untuk menggali kumpulan dokumen text sehingga dapat diambil intisarinya. Ada beberapa algoritma yang di gunakan untuk penggalian dokumen untuk analisis sentimen, salah satunya adalah K-Means. Didalam penelitian ini algoritma yang digunakan adalah K-Means. Hasil penelitian menunjukkan bahwa akurasi K-Means dengan dataset digunakan 300 positif dan 300 negatif akurasinya 57.83%, 700 dokumen positif dan 700 negatif akurasinya 56.71%%, 1000 dokumen positif dan 1000 negatif akurasinya 50.40%%. Dari hasil pengujian disimpulkan bahwa semakin besar dataset yang digunakan semakin rendah akurasi K-Means.  Kata Kunci : Text Mining, Analisis Sentimen, K-Means, Review FilmÂReferences
Witten, I. H., Frank E., Hall, M. A., 2011, Data Mining, Practical Machine Learning Tools and Techniques, Ed. 3, Burlington: Morgan Kaufmann, USA.
Francis, L, Flynn, M., 2010, Text Mining Handbook, Casualty Actuarial Society E-Forum, p.1, Spring.
G. Li and F. Liu, 2010, A Clustering-based Approach on Sentiment Analysis, in Intelligent Systems and Knowledge Engineering (ISKE), 2010 International Conference on 2010 Nov 15, pp.331-337, Australia, IEEE
Stylios, G., Christodoulakis, D., Besharat, J., Vonitsanou, M., Kotrotsos, I., Koumpouri, A. and Stamou, S., 2010. Public opinion mining for Governmental Decisions. Electronic Journal of e-Government, Vol. 8(2), pp.203-214.
Keefe, T. O., Koprinska, I., 2009, Feature Selection and Weighting Methods in Sentiment Analysis, Proceedings of the 14th Australasian Document Computing Symposium, pp. 1-8, Dec 4.
Abbasi, A., Chen, H., Salem, A., 2008. Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Transactions on Information Systems (TOIS), 26(3), p.12.
Pang, B., Lee, L., 2004, A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts, ACL '04 Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, Barcelona, Spain, July 21.
L. Suanmali, L., N. Salim, N. dan Binwahlan, M.S., 2008, Automatic Text Summarization Using Feature Based Fuzzy Extraction, Jurnal Teknologi Maklumat, Jilid 20, Bil.2, Desember.
Baeza-Yates, R. and Ribeiro-Neto, B., 1999. Modern information retrieval (Vol. 463). New York: ACM press.
MacQueen, J., 1967, June. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).
Velmurugan, T. and Santhanam, T., 2010. Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points. Journal of computer science, 6(3), p.363.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Setyo Budi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/