Perbandingan Hasil Analisis Clustering Metode K-Means, DBSCAN Dan Hierarchical Pada Data Marketplace Electronic Phone
DOI:
https://doi.org/10.33633/joins.v8i1.8016Keywords:
marketplace, clustering, k-means, dbscan, hierarchicalAbstract
Persaingan yang ketat terjadi di bidang penjualan, salah satunya pada electronic marketplace (e-marketplace). Pada setiap e-marketplace tentu memiliki data penjualan sehari-hari yang semakin lama, data akan bertambah. Bukan hanya digunakan untuk dokumen perusahaan, tetapi juga bisa digunakan serta dikelola sehingga menghasilkan suatu informasi yang bermanfaat dalam meningkatkan promosi dan penjualan produk jika diolah dengan baik. Tujuan dari penelitian ini untuk mengolah data e-marketplace dengan cara clustering dan membandingkan hasil yang diperoleh dari setiap model clustering yang dipakai. Model clustering tersebut adalah K-Means, DBSCAN, dan Hierarchical. Hasil yang didapatkan yaitu dari ketiga metode clustering yang digunakan didapat model terbaik yaitu Hierarchical dengan jumlah cluster 2 dari silhouette sebesar 0.944473. Dari hasil tersebut dapat diketahui pengelompokan penjualan handphone dengan merk terbanyak dan hasil clustering dapat menjadi perbandingan metode yang paling optimal.References
U. D. Soer and B. K. L. Batu, “Implementasi Algoritma Apriori Untuk Prediksi Penjualan Produk Packaging Di PT. Printec Perkasa II,” vol. 9, no. 3, 2019.
F. P. A. Hasibuan, S. Sumarno, and I. Parlina, “Penerapan K-Means pada Pengelompokan Penjualan Produk Smartphone,” SATESI J. Sains Teknol. Dan Sist. Inf., vol. 1, no. 1, pp. 15–20, Sep. 2021, doi: 10.54259/satesi.v1i1.3.
L. A. Suryanita and P. K. Arieska, “Analisis Cluster Persepsi Konsumen Terhadap Produk Handphone Untuk Menentukan Strategi Promosi Penjualan Di ZICOMS,” J Stat. J. Ilm. Teori Dan Apl. Stat., vol. 8, no. 1, Dec. 2015, doi: 10.36456/jstat.vol8.no1.a309.
I. Nuryani and D. Darwis, “Analisis Clustering Pada Pengguna Brand HP Menggunakan Metode K-MEANS,” vol. 1, no. 1, 2021.
P. A. Rahayuningsih and R. Maulana, “Analisis Perbandingan Algoritma Klasifikasi Data Mining Untuk Dataset Blogger Dengan Rapid Miner,” vol. 6, no. 1, 2018.
M. A. Senubekti and L. A. Puspita Dewi, “Prinsip Klasifikasi Dan Data Mining Dengan Algoritma C4.5,” NUANSA Inform., vol. 16, no. 2, pp. 87–93, Jul. 2022, doi: 10.25134/nuansa.v16i2.5834.
A. A. Herlambang, M. A. Murti, and C. Setianingsih, “Pengelompokkan Data Penggunaan Energi Listrik Menggunakan Algoritma Mini Batch K-Meansclustering,” vol. 9, no. 5, 2022.
P. Silitonga and I. S. Morina, “Klusterisasi Pola Penyebaran Penyakit Pasien Berdasarkan Usia Pasien Dengan Menggunakan K-Means Clustering,” J. Times, vol. 6, no. 2, 2017.
D. K. Alfiki Astutik, A. Indrasetianingsih, and F. Fitriani, “Penerapan Text Mining pada Analisis Sentimen Pengguna Twitter Layanan Transportasi Online Menggunakan Metode Density Based Spatial Clustering of Applications With Noise (DBSCAN) dan K-Means,” J Stat. J. Ilm. Teori Dan Apl. Stat., vol. 15, no. 1, Jul. 2022, doi: 10.36456/jstat.vol15.no1.a5983.
T. Alfina, B. Santosa, and J. A. R. Hakim, “Analisa Perbandingan Metode Hierarchical Clustering, K-means dan Gabungan Keduanya dalam Cluster Data (Studi kasus : Problem Kerja Praktek Jurusan Teknik Industri ITS),” vol. 1, p. 5, 2012.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.