Generator Kuis untuk Meningkatkan Hasil Belajar Siswa dalam Smart LMS
DOI:
https://doi.org/10.33633/joins.v6i2.5269Abstract
Penelitian ini bertujuan mengembangkan salah satu fitur Learning Management System (LMS) terkait online assessment yaitu kuis. Salah satu fitur didalam LMS ini adalah tersedianya fasilitas kuis bagi mahasiswa yang dapat dilakukan sesuai jadwalnya secara online. LMS saat ini hanya menampilkan capaian pengerjaan kuis mahasiswa dari segi nilai. Belum tersedia informasi terkait kesalahan jawaban beserta jawabannya sehingga mahasiswa tidak bisa mengukur capaiana pembelajaran mereka berdasarkan kuis. Menggunakan pendekatan machine learning, penelitian ini membangun sebuah model untuk auto-generate soal-soal kuis yang mengacu kepada lecture note yang sudah tersedia di LMS sesuai matakuliah yang berjalan. Hasilnya terbukti meningkatkan antusias mahasiswa didalam mengerjakan kuis berdasarkan uji coba pada beberapa matakuliah di Jurusan Sistem Informasi, bersumber pada lecture note, soal kuis berhasil di auto-generate per topik matakuliah tersebut. Selain menginformasikan nilai kuis mahasiswa, sistem LMS juga memunculkan jawaban yang salah beserta kunci jawabannya. didapatkan sebuah model guna pengembangan generator kuis.Kata kunci: Smart LMS, machine learning, lecture note, auto-generate, generator kuisReferences
U. K. Mothukuri et al., “Improvisation of learning experience using Learning Analytics in eLearning,” 2017.
X. Kong, S. Boll, and W. Heuten, “Towards Recommender Systems Supporting Knowledge Sharing and Transfer in Vocational Education and Training,” pp. 25–30, 2013, doi: 10.1109/ICeLeTE.2013.6644342.
O. Chavarriaga, B. Florian-gaviria, and O. Solarte, “Open Learning and Teaching in Educational Communities,” vol. 8719, no. July, 2014, doi: 10.1007/978-3-319-11200-8.
D. F. Murad and S. M. Isa, “Text Mining Analysis in the Log Discussion Forum for Online Learning Recommendation Systems,” 2018.
A. Kumar, “Open Problems in Recommender Systems Diversity,” pp. 82–87, 2017.
Y. Salman, A. Abu-Issa, I. Tumar, and Y. Hassouneh, “A model and prototype of a proactive multi-type context-aware recommender system,” 2017 Intell. Syst. Conf., no. September, pp. 297–303, 2017, doi: 10.1109/IntelliSys.2017.8324308.
H. Zhu et al., “Learning Tree-based Deep Model for Recommender Systems,” Jan. 2018, doi: 10.1145/3219819.3219826.
J. Guptill and J. Guptil, “Knowledge Management in Health Care,” J. Health Care Finance, vol. 31, no. 3, pp. 10–14, 2005, doi: 10.1007/s13398-014-0173-7.2.
M. Abbas, M. U. Riaz, A. Rauf, M. T. Khan, and S. Khalid, “Context-aware Youtube Recommender System,” pp. 161–164, 2017, doi: 10.1109/ICICT.2017.8320183.
F. Mar, W. F. Mahmudy, and C. Yusainy, “Sistem Rekomendasi Profesi Berdasarkan Dimensi Big Five Profession Recommendation System Based On Big Five Personality,” vol. 6, no. 5, pp. 457–466, 2019, doi: 10.25126/jtiik.20196942.
H. H. Wang, C. Chootong, A. Ochirbat, W. Sommool, W. K. T. M. Gunarathn, and T. K. Shih, “Online courses recommendation system based on industry occupation skills requirements,” 2017, doi: 10.1109/UMEDIA.2017.8074083.
P. Agarwal, R. Verma, and A. Majumdar, “Indian Regional Movie Dataset for Recommender Systems,” Jan. 2018, Accessed: Jul. 02, 2018. [Online]. Available: http://arxiv.org/abs/1801.02203.
H. Ketmaneechairat, “Recommender System for Thai Food Cooking on Smartphone,” no. Icdim, 2017.
A. Ben and P. Zweigenbaum, “MEANS?: A medical question-answering system combining NLP techniques and semantic Web technologies,” Inf. Process. Manag., vol. 51, no. 5, pp. 570–594, 2015, doi: 10.1016/j.ipm.2015.04.006.
E. Marrese-taylor, A. Nakajima, Y. Matsuo, and O. Yuichi, “Learning to Automatically Generate Fill-In-The-Blank Quizzes.”
J. Araki, D. Rajagopal, S. Sankaranarayanan, S. Holm, Y. Yamakawa, and T. Mitamura, “Generating Questions and Multiple-Choice Answers using Semantic Analysis of Texts,” pp. 1125–1136, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.