Jaringan Syaraf Tiruan Untuk Prediksi Daerah Rawan Banjir Studi Kasus Kabupaten Karawang

Authors

  • Gugi Asgaruning Universitas Singaperbangsa Karawang
  • Aji Primajaya Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.33633/joins.v6i2.4577

Abstract

Banjir merupakan salah satu bencana alam yang sering terjadi di Indonesia, khususnya di daerah Kabupaten Karawang. Banyak kerugian yang dialami oleh masyarakat akibat terjadinya banjir. Ada beberapa parameter yang dapat digunakan untuk memprediksi terjadinya banjir seperti curah  hujan, kepadatan penduduk, dan ketinggian permukaan tanah. Pemodelan prediksi banjir perlu menghasilkan hasil yang akurat agar sistem dapat menghasilkan hasil yang bagus dalam memprediksi daerah-daerah yang rawan banjir. Pada penelitian ini akan melakukan pemodelan prediksi banjir menggunakan Jaringan Syaraf Tiruan. Untuk menentukan model yang baik perlu dilakukan sebuah metode pembagian dataset yaitu k-fold cross validation dimana setiap bagian (fold) dijadikan sebagai data uji dan n-1fold dijadikan data latih. Data yang akan digunakan pada penelitian ini adalah data curah hujan, data kepadatan penduduk, data ketinggian permukaan tanah, dan data banjir pada tahun 2015 di 30 kecamatan di Kabupaten Karawang. Hasil prediksi pada proses pelatihan dan pengujian menghasilkan nilai MSE terkecil pada k-fold ke 8 =0.00820644, nilai RMSE terkecil pada k-fold ke 3 = 0.07052563, dan nilai MAE terkecil pada k-fold ke 1 = 0.12276052. Kemudian rata-rata MSE 0.341, RMSE 0.666, dan MAE 0.302.

References

B. K. Karawang, "Bab I Letak Geografis," KARAWANG DALAM ANGKA 2015, Karawang: Bappeda Kabupaten Karawang, 2015, 1-5.

A. R. Sanubari, P. D. Kusuma, and C. Setianingsih, “Pemodelan Prediksi Banjir Menggunakan Artificial Neural Network,” e-Proceeding Eng., vol. 5, no. 3, pp. 6276–6282, 2018.

S. Berkhahn, L. Fuchs, and I. Neuweiler, “An Ensemble Neural Network Model For Real-Time Prediction Of Urban Floods,” J. Hydrol., vol. 575, no. February, pp. 743–754, 2019, doi: 10.1016/j.jhydrol.2019.05.066.

K. C. Keong, M. Mustafa, A. J. Mohammad, M. H. Sulaiman, and N. R. H. Abdullah, “Artificial neural network flood prediction for sungai isap residence,” Proc. - 2016 IEEE Int. Conf. Autom. Control Intell. Syst. I2CACIS 2016, no. October, pp. 236–241, 2017, doi: 10.1109/I2CACIS.2016.7885321.

J. Veintimilla-Reyes, F. Cisneros, and P. Vanegas, “Artificial Neural Networks Applied to Flow Prediction: A Use Case for the Tomebamba River,” Procedia Eng., vol. 162, pp. 153–161, 2016, doi: 10.1016/j.proeng.2016.11.031.

F. Ayu, “Implementasi Jaringan Saraf Tiruan Untuk Menentukan Kelayakan Proposal Tugas Akhir,” It J. Res. Dev., vol. 3, no. 2, pp. 44–53, 2019, doi: 10.25299/itjrd.2019.vol3(2).2271.

I. R. Widyan, "Platform Visualisasi Data Untuk Pemerintah Amsterdam Sebagai Solusi Pembersihan Kota Secara Efektif," Doctoral dissertation, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2007.

Downloads

Published

2021-12-15

How to Cite

[1]
G. Asgaruning and A. Primajaya, “Jaringan Syaraf Tiruan Untuk Prediksi Daerah Rawan Banjir Studi Kasus Kabupaten Karawang”, Journal of Information System, vol. 6, no. 2, pp. 153–161, Dec. 2021.