Implementasi Metode Naive Bayes Untuk Klasifikasi Kredit Motor
DOI:
https://doi.org/10.33633/joins.v3i1.1877Abstract
AbstrakKredit dalam hal ini telah menjadi sumber penghasilan bagi beberapa bank ataupun perusahaan dan instansi swasta yang menyewakan jasa kreditnya kepada konsumen, meskipun begitu dapat dilihat terdapat beberapa konsumen yang memiliki kredit macet seperti tunggakan dan hal lainnya yang mengakibatkan tidak dapat melanjutkan pembayaran kredit. OTO Kredit Motor adalah salah satu perusahaan yang bergerak dibidang perkreditan kendaraan beroda dua atau motor. Dalam hal ini OTO Kredit Motor masih sangat kesulitan di dalam menentukan calon debitur yang nantinya akan layak untuk mendapatkan kredit tersebut. Oleh karena itu data mining digunakan untuk dapat memprediksi resiko terjadinya kredit macet dengan melakukan pengklasifikasian terhadap calon debitur kendaraan nantinya. Tujuan dari penelitian ini, adalah memprediksi terhadap kelayakan kredit macet menggunakan metode Naïve Bayes. Hasil dari penelitian digunakan untuk memprediksi kelayakan kredit untuk menghindarkan terjadinya kredit macet, dan mengevaluasi performance model Naïve Bayes.Kata Kunci:DataMining, Algoritma Naive Bayes, Klasifikasi, Debitur.AbstractIn this case the credit has become a source of income for some banks or companies also private institutions for lease their credit services to consumers, although it can be seen there are some consumers who have bad loans such as arrears and other things that can be effecting failure in resume credit payments.OTO Kredit Motor is one of the companies were engaged in the loan of motorcycles. In this case OTO Kredit Motor is still very difficult in determining the prospective borrowers who will be eligible to get the credit. Therefore, data mining is used to predict the risk of non-performing loans by classifying the prospective borrower of the vehicle. The purpose of this study, is to predict the viability of bad loans using the Naïve Bayes method. The results of the study were used to predict creditworthiness to avoid bad credit, and to evaluate the performance of the Naïve Bayes model.Keyword :Data Mining, Naive Bayes Algorithm, Classification, Debtor.Downloads
Published
2018-05-31
How to Cite
[1]
H. Heryono and A. Kardianawati, “Implementasi Metode Naive Bayes Untuk Klasifikasi Kredit Motor”, Journal of Information System, vol. 3, no. 1, pp. 10–21, May 2018.
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.