This is an outdated version published on 2024-04-29. Read the most recent version.

Green Corrosion Inhibitors for Iron Alloys: A Comprehensive Review of Integrating Data-Driven Forecasting, Density Functional Theory Simulations, and Experimental Investigation

Authors

  • Muhamad Akrom Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62411/jimat.v1i1.10495

Abstract

This comprehensive review delves into the realm of green corrosion inhibitors for iron alloys, focusing on a thorough exploration guided by data-driven investigation, density functional theory (DFT) simulations, and experimental validation. Harnessing the potential of plant extracts, this study scrutinizes their effectiveness in mitigating corrosion in iron alloys through a multi-faceted approach. By integrating computational modeling with empirical experimentation, a deeper understanding of the inhibitive mechanisms is achieved, offering insights into their practical application. The review synthesizes findings from diverse studies, elucidating the pivotal role of DFT in predicting inhibitor behavior and optimizing their performance. Furthermore, experimental validation provides crucial validation of theoretical predictions, highlighting the synergistic relationship between simulation and real-world application. Through this journey of exploration, the review underscores the promise of green corrosion inhibitors derived from natural sources, paving the way for sustainable corrosion control practices in the realm of iron alloys.

Author Biography

Muhamad Akrom, Universitas Dian Nuswantoro

Scopus: 58054974800Google Scholar:  HqilwgYAAAAJSinta: 6741450 

References

W. Herowati et al., “Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms,” KnE Engineering, Mar. 2024, doi: 10.18502/keg.v6i1.15350.

S. Budi et al., “Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as Corrosion Inhibitors,” KnE Engineering, Mar. 2024, doi: 10.18502/keg.v6i1.15351.

D. I. Njoku, Y. Li, H. Lgaz, and E. E. Oguzie, “Dispersive adsorption of Xylopia aethiopica constituents on carbon steel in acid-chloride medium: A combined experimental and theoretical approach,” J Mol Liq, vol. 249, pp. 371–388, Jan. 2018, doi: 10.1016/j.molliq.2017.11.051.

M. Akrom et al., “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract,” Appl Surf Sci, vol. 615, Apr. 2023, doi: 10.1016/j.apsusc.2022.156319.

S. Budi, M. Akrom, G. A. Trisnapradika, T. Sutojo, W. Aji, and E. Prabowo, “Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets,” Scientific Journal of Informatics, vol. 10, no. 2, 2023, doi: 10.15294/sji.v10i2.43929.

E. Gutiérrez, J. A. Rodríguez, J. Cruz-Borbolla, J. G. Alvarado-Rodríguez, and P. Thangarasu, “Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives,” Corros Sci, vol. 108, pp. 23–35, Jul. 2016, doi: 10.1016/j.corsci.2016.02.036.

V. C. Anadebe, V. I. Chukwuike, S. Ramanathan, and R. C. Barik, “Cerium-based metal organic framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2- saturated brine solution: XPS, DFT/MD-simulation, and machine learning model prediction,” Process Safety and Environmental Protection, vol. 168, pp. 499–512, Dec. 2022, doi: 10.1016/J.PSEP.2022.10.016.

M. Akrom, “Investigation Of Natural Extracts As Green Corrosion Inhibitors In Steel Using Density Functional Theory,” 2022.

T. L. Yusuf, T. W. Quadri, G. F. Tolufashe, L. O. Olasunkanmi, E. E. Ebenso, and W. E. Van Zyl, “Synthesis and structures of divalent Co, Ni, Zn and Cd complexes of mixed dichalcogen and dipnictogen ligands with corrosion inhibition properties: Experimental and computational studies,” RSC Adv, vol. 10, no. 69, pp. 41967–41982, Nov. 2020, doi: 10.1039/d0ra07770d.

M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds,” Mater Today Commun, vol. 35, p. 106402, Jun. 2023, doi: 10.1016/J.MTCOMM.2023.106402.

I. Ichchou, L. Larabi, H. Rouabhi, Y. Harek, and A. Fellah, “Electrochemical evaluation and DFT calculations of aromatic sulfonohydrazides as corrosion inhibitors for XC38 carbon steel in acidic media,” J Mol Struct, vol. 1198, Dec. 2019, doi: 10.1016/j.molstruc.2019.126898.

R. L. Camacho-Mendoza, L. Feria, L. Á. Zárate-Hernández, J. G. Alvarado-Rodríguez, and J. Cruz-Borbolla, “New QSPR model for prediction of corrosion inhibition using conceptual density functional theory,” J Mol Model, vol. 28, no. 8, Aug. 2022, doi: 10.1007/s00894-022-05240-6.

M. Akrom, “Investigation Of Natural Extracts As Green Corrosion Inhibitors In Steel Using Density Functional Theory,” 2022.

M. Akrom, S. Rustad, and H. K. Dipojono, “Development of Quantum Machine Learning to Evaluate the Corrosion Inhibition Capability of Pyrimidine Compounds,” Mater Today Commun, p. 108758, Mar. 2024, doi: 10.1016/J.MTCOMM.2024.108758.

S. Marzorati, L. Verotta, and S. P. Trasatti, “Green corrosion inhibitors from natural sources and biomass wastes,” Molecules, vol. 24, no. 1, 2019, doi: 10.3390/molecules24010048.

M. Akrom et al., “Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi,” vol. 07, no. 01, pp. 15–20, [Online]. Available: https://doi.org/10.

M. Akrom, S. Rustad, and H. K. Dipojono, “A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors,” Phys Scr, vol. 99, no. 3, p. 036006, Mar. 2024, doi: 10.1088/1402-4896/ad28a9.

M. Akrom, S. Rustad, and H. K. Dipojono, “SMILES-based machine learning enables the prediction of corrosion inhibition capacity,” MRS Commun, Apr. 2024, doi: 10.1557/s43579-024-00551-6.

H. Kumar and V. Yadav, “Highly efficient and eco-friendly acid corrosion inhibitor for mild steel: Experimental and theoretical study,” J Mol Liq, vol. 335, Aug. 2021, doi: 10.1016/j.molliq.2021.116220.

M. Akrom, “Investigasi DFT pada Ekstrak Tanaman Cengkeh dan Tembakau sebagai Inhibitor Korosi Hijau DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor.”

C. Verma, M. A. Quraishi, and E. E. Ebenso, “Quinoline and its derivatives as corrosion inhibitors: A review,” Surfaces and Interfaces, vol. 21, p. 100634, Dec. 2020, doi: 10.1016/J.SURFIN.2020.100634.

S. A. Haladu, N. Dalhat Mu’azu, S. A. Ali, A. M. Elsharif, N. A. Odewunmi, and H. M. Abd El-Lateef, “Inhibition of mild steel corrosion in 1 M H2SO4 by a gemini surfactant 1,6-hexyldiyl-bis-(dimethyldodecylammonium bromide): ANN, RSM predictive modeling, quantum chemical and MD simulation studies,” J Mol Liq, vol. 350, p. 118533, Mar. 2022, doi: 10.1016/J.MOLLIQ.2022.118533.

M. Akrom and T. Sutojo, “Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi Pirimidin Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors”.

F. E. Abeng and V. C. Anadebe, “Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution,” Comput Theor Chem, vol. 1229, p. 114334, Nov. 2023, doi: 10.1016/J.COMPTC.2023.114334.

V. Vorobyova and M. Sk?ba, “APRICOT POMACE EXTRACT AS A NATURAL CORROSION INHIBITOR OF MILD STEEL CORROSION IN 0.5 M NaCl SOLUTION: A COMBINED EXPERIMENTAL AND THEORETICAL APPROACH,” 2020.

F. M. Haikal, M. Akrom, and G. A. Trisnapradika, “Perbandingan Algoritma Multilinear Regression dan Decision Tree Regressor dalam Memprediksi Efisiensi Penghambatan Korosi Piridazin,” Edumatic: Jurnal Pendidikan Informatika, vol. 7, no. 2, pp. 307–315, Dec. 2023, doi: 10.29408/edumatic.v7i2.22127.

N. V. Putranto, M. Akrom, G. A. Trinapradika, and A. History, “Jurnal Teknologi dan Manajemen Informatika Implementasi Fungsi Polinomial pada Algoritma Gradient Boosting Regressor: Studi Regresi pada Dataset Obat-Obatan Kadaluarsa sebagai Material Antikorosi Article Info ABSTRACT,” vol. 9, no. 2, pp. 172–182, 2023, [Online]. Available: http://http://jurnal.unmer.ac.id/index.php/jtmi

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, and H. Kresno Dipojono, “Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds,” J Phys Conf Ser, vol. 2673, no. 1, p. 012014, Dec. 2023, doi: 10.1088/1742-6596/2673/1/012014.

M. Kemampuan Penghambatan Korosi oleh Senyawa Benzimidazole, C. Adryan Putra Sumarjono, M. Akrom, and G. Alfa Trisnapradika, “Perbandingan Model Machine Learning Terbaik untuk Comparison of the Best Machine Learning Model to Predict Corrosion Inhibition Capability of Benzimidazole Compounds,” 2023.

L. T. Popoola, “Organic green corrosion inhibitors (OGCIs): A critical review,” Corrosion Reviews, vol. 37, no. 2. De Gruyter, pp. 71–102, Apr. 01, 2019. doi: 10.1515/corrrev-2018-0058.

R. Oukhrib et al., “DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-82927-5.

Z. Shariatinia and A. Ahmadi-Ashtiani, “Corrosion inhibition efficiency of some phosphoramide derivatives: DFT computations and MD simulations,” J Mol Liq, vol. 292, Oct. 2019, doi: 10.1016/j.molliq.2019.111409.

V. Frendyatha Adiprasetya, M. Akrom, and G. Alfa Trisnapradika, “Investigasi Efisiensi Penghambatan Korosi Senyawa Quinoxaline Berbasis Machine Learning A Study on the Corrosion Inhibition Efficiency of Quinoxaline Compounds Utilizing Machine Learning,” 2024.

X. Chen, Y. Chen, J. Cui, Y. Li, Y. Liang, and G. Cao, “Molecular dynamics simulation and DFT calculation of ‘green’ scale and corrosion inhibitor,” Comput Mater Sci, vol. 188, p. 110229, Feb. 2021, doi: 10.1016/J.COMMATSCI.2020.110229.

D. Kumar, V. Jain, and B. Rai, “Imidazole derivatives as corrosion inhibitors for copper: A DFT and reactive force field study,” Corros Sci, vol. 171, p. 108724, Jul. 2020, doi: 10.1016/J.CORSCI.2020.108724.

Z. Chen, Y. Nong, J. Chen, Y. Chen, and B. Yu, “A DFT study on corrosion mechanism of steel bar under water-oxygen interaction,” Comput Mater Sci, vol. 171, Jan. 2020, doi: 10.1016/j.commatsci.2019.109265.

J. Ge et al., “Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model,” Plants, vol. 11, no. 15, Aug. 2022, doi: 10.3390/plants11151923.

K. Karattu Veedu, T. Peringattu Kalarikkal, N. Jayakumar, and N. K. Gopalan, “Anticorrosive Performance of Mangifera indica L. Leaf Extract-Based Hybrid Coating on Steel,” ACS Omega, vol. 4, no. 6, pp. 10176–10184, Jun. 2019, doi: 10.1021/acsomega.9b00632.

C. Verma, M. A. Quraishi, E. E. Ebenso, and I. Bahadur, “A Green and Sustainable Approach for Mild Steel Acidic Corrosion Inhibition Using Leaves Extract: Experimental and DFT Studies,” J Bio Tribocorros, vol. 4, no. 3, Sep. 2018, doi: 10.1007/s40735-018-0150-3.

C. O. Akalezi, C. K. Enenebaku, and E. E. Oguzie, “Application of aqueous extracts of coffee senna for control of mild steel corrosion in acidic environments,” International Journal of Industrial Chemistry, vol. 3, no. 1, pp. 1–12, Dec. 2012, doi: 10.1186/2228-5547-3-13.

M. H. Hussin, M. Jain Kassim, N. N. Razali, N. H. Dahon, and D. Nasshorudin, “The effect of Tinospora crispa extracts as a natural mild steel corrosion inhibitor in 1 M HCl solution,” Arabian Journal of Chemistry, vol. 9, pp. S616–S624, Sep. 2016, doi: 10.1016/j.arabjc.2011.07.002.

M. Faiz, A. Zahari, K. Awang, and H. Hussin, “Corrosion inhibition on mild steel in 1 M HCl solution by: Cryptocarya nigra extracts and three of its constituents (alkaloids),” RSC Adv, vol. 10, no. 11, pp. 6547–6562, 2020, doi: 10.1039/c9ra05654h.

S. Pal, H. Lgaz, P. Tiwari, I. M. Chung, G. Ji, and R. Prakash, “Experimental and theoretical investigation of aqueous and methanolic extracts of Prunus dulcis peels as green corrosion inhibitors of mild steel in aggressive chloride media,” J Mol Liq, vol. 276, pp. 347–361, Feb. 2019, doi: 10.1016/j.molliq.2018.11.099.

D. E. Arthur and S. E. Abechi, “Corrosion inhibition studies of mild steel using Acalypha chamaedrifolia leaves extract in hydrochloric acid medium,” SN Appl Sci, vol. 1, no. 9, Sep. 2019, doi: 10.1007/s42452-019-1138-4.

A. E. A. S. Fouda, S. M. Rashwan, M. M. Kamel, and E. A. Haleem, “Juglans regia extract (JRE) as eco-friendly inhibitor for aluminum metal in hydrochloric acid medium,” Biointerface Res Appl Chem, vol. 10, no. 5, pp. 6398–6416, Oct. 2020, doi: 10.33263/BRIAC105.63986416.

N. A. Odewunmi, S. A. Umoren, and Z. M. Gasem, “Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media,” Journal of Industrial and Engineering Chemistry, vol. 21, pp. 239–247, Jan. 2015, doi: 10.1016/j.jiec.2014.02.030.

S. Chen, B. Zhu, and X. Liang, “Corrosion inhibition performance of coconut leaf extract as a green corrosion inhibitor for X65 steel in hydrochloric acid solution,” Int J Electrochem Sci, vol. 15, no. 1, pp. 1–15, Jan. 2020, doi: 10.20964/2020.01.39.

M. Mobin, M. Basik, and J. Aslam, “Pineapple stem extract (Bromelain) as an environmental friendly novel corrosion inhibitor for low carbon steel in 1 M HCl,” Measurement (Lond), vol. 134, pp. 595–605, Feb. 2019, doi: 10.1016/j.measurement.2018.11.003.

J. Bhawsar, P. K. Jain, and P. Jain, “Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium,” Alexandria Engineering Journal, vol. 54, no. 3, pp. 769–775, Sep. 2015, doi: 10.1016/j.aej.2015.03.022.

A. Sedik et al., “Dardagan Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies,” J Taiwan Inst Chem Eng, vol. 107, pp. 189–200, Feb. 2020, doi: 10.1016/j.jtice.2019.12.006.

A. R. Shahmoradi, M. Ranjbarghanei, A. A. Javidparvar, L. Guo, E. Berdimurodov, and B. Ramezanzadeh, “Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte,” J Mol Liq, vol. 338, Sep. 2021, doi: 10.1016/j.molliq.2021.116550.

A. Y. El-Etre, “Khillah extract as inhibitor for acid corrosion of SX 316 steel,” Appl Surf Sci, vol. 252, no. 24, pp. 8521–8525, Oct. 2006, doi: 10.1016/j.apsusc.2005.11.066.

Y. Qiang, S. Zhang, B. Tan, and S. Chen, “Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution,” Corros Sci, vol. 133, pp. 6–16, Apr. 2018, doi: 10.1016/j.corsci.2018.01.008.

N. Soltani, N. Tavakkoli, A. Attaran, B. Karimi, and M. Khayatkashani, “Inhibitory effect of Pistacia khinjuk aerial part extract for carbon steel corrosion in sulfuric acid and hydrochloric acid solutions,” Chemical Papers, vol. 74, no. 6, pp. 1799–1815, Jun. 2020, doi: 10.1007/s11696-019-01026-y.

A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, and M. Ramezanzadeh, “Potential of Borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: Electrochemical and theoretical studies,” J Mol Liq, vol. 277, pp. 895–911, Mar. 2019, doi: 10.1016/j.molliq.2019.01.008.

S. M. Lashgari, G. Bahlakeh, and B. Ramezanzadeh, “Detailed theoretical DFT computation/molecular simulation and electrochemical explorations of Thymus vulgaris leave extract for effective mild-steel corrosion retardation in HCl solution,” J Mol Liq, vol. 335, Aug. 2021, doi: 10.1016/j.molliq.2021.115897.

A. Salmasifar, M. Edraki, E. Alibakhshi, B. Ramezanzadeh, and G. Bahlakeh, “Combined electrochemical/surface investigations and computer modeling of the aquatic Artichoke extract molecules corrosion inhibition properties on the mild steel surface immersed in the acidic medium,” J Mol Liq, vol. 327, Apr. 2021, doi: 10.1016/j.molliq.2020.114856.

A. Dehghani, G. Bahlakeh, and B. Ramezanzadeh, “A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution,” J Mol Liq, vol. 282, pp. 366–384, May 2019, doi: 10.1016/j.molliq.2019.03.011.

M. H. Shahini, M. Keramatinia, M. Ramezanzadeh, B. Ramezanzadeh, and G. Bahlakeh, “Combined atomic-scale/DFT-theoretical simulations & electrochemical assessments of the chamomile flower extract as a green corrosion inhibitor for mild steel in HCl solution,” J Mol Liq, vol. 342, p. 117570, Nov. 2021, doi: 10.1016/J.MOLLIQ.2021.117570.

A. Thakur, S. Kaya, A. S. Abousalem, and A. Kumar, “Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment,” Sustain Chem Pharm, vol. 29, Oct. 2022, doi: 10.1016/j.scp.2022.100785.

N. Asadi, M. Ramezanzadeh, G. Bahlakeh, and B. Ramezanzadeh, “Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: A detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study,” J Taiwan Inst Chem Eng, vol. 95, pp. 252–272, Feb. 2019, doi: 10.1016/j.jtice.2018.07.011.

M. Ramezanzadeh, G. Bahlakeh, Z. Sanaei, and B. Ramezanzadeh, “Corrosion inhibition of mild steel in 1 M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: Electrochemical, molecular dynamics, Monte Carlo and ab initio study,” Appl Surf Sci, vol. 463, pp. 1058–1077, Jan. 2019, doi: 10.1016/j.apsusc.2018.09.029.

G. Bahlakeh, B. Ramezanzadeh, A. Dehghani, and M. Ramezanzadeh, “Novel cost-effective and high-performance green inhibitor based on aqueous Peganum harmala seed extract for mild steel corrosion in HCl solution: Detailed experimental and electronic/atomic level computational explorations,” J Mol Liq, vol. 283, pp. 174–195, Jun. 2019, doi: 10.1016/j.molliq.2019.03.086.

M. T. Majd, S. Asaldoust, G. Bahlakeh, B. Ramezanzadeh, and M. Ramezanzadeh, “Green method of carbon steel effective corrosion mitigation in 1 M HCl medium protected by Primula vulgaris flower aqueous extract via experimental, atomic-level MC/MD simulation and electronic-level DFT theoretical elucidation,” J Mol Liq, vol. 284, pp. 658–674, Jun. 2019, doi: 10.1016/j.molliq.2019.04.037.

H. Lachhab et al., “Detailed experimental performance of two new pyrimidine-pyrazole derivatives as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond breaking upon adsorption,” Colloids Surf A Physicochem Eng Asp, vol. 680, p. 132649, Jan. 2024, doi: 10.1016/j.colsurfa.2023.132649.

M. Boudalia et al., “Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative,” Materials, vol. 16, no. 2, Jan. 2023, doi: 10.3390/ma16020678.

M. Akrom, S. Rustad, and H. Kresno Dipojono, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors,” Results Chem, p. 101126, Sep. 2023, doi: 10.1016/J.RECHEM.2023.101126.

L. B. Coelho, D. Zhang, Y. Van Ingelgem, D. Steckelmacher, A. Nowé, and H. Terryn, “Reviewing machine learning of corrosion prediction in a data-oriented perspective,” npj Materials Degradation, vol. 6, no. 1. Nature Publishing Group, Dec. 01, 2022. doi: 10.1038/s41529-022-00218-4.

T. W. Quadri et al., “Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids,” Comput Mater Sci, vol. 214, Nov. 2022, doi: 10.1016/j.commatsci.2022.111753.

M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors,” Comput Theor Chem, vol. 1229, p. 114307, Nov. 2023, doi: 10.1016/J.COMPTC.2023.114307.

K. F. Khaled, W. E. Org, and N. A. Al-Mobarak, “A Predictive Model for Corrosion Inhibition of Mild Steel by Thiophene and Its Derivatives Using Artificial Neural Network Characterization and Corrosion Protection Properties of Imidazole Derivatives on Mild Steel in 1.0 M HCl View project ELECTROCHEMICAL SCIENCE A Predictive Model for Corrosion Inhibition of Mild Steel by Thiophene and Its Derivatives Using Artificial Neural Network,” 2012. [Online]. Available: https://www.researchgate.net/publication/236141845

C. T. Ser, P. Žuvela, and M. W. Wong, “Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships,” Appl Surf Sci, vol. 512, p. 145612, May 2020, doi: 10.1016/J.APSUSC.2020.145612.

T. W. Quadri et al., “Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors,” Mater Today Commun, vol. 30, p. 103163, Mar. 2022, doi: 10.1016/J.MTCOMM.2022.103163.

T. W. Quadri et al., “Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies,” Arabian Journal of Chemistry, vol. 15, no. 7, p. 103870, Jul. 2022, doi: 10.1016/J.ARABJC.2022.103870.

C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” Int J Mol Sci, vol. 23, no. 9, May 2022, doi: 10.3390/ijms23095086.

L. Guo, C. Qi, X. Zheng, R. Zhang, X. Shen, and S. Kaya, “Toward understanding the adsorption mechanism of large size organic corrosion inhibitors on an Fe(110) surface using the DFTB method,” RSC Adv, vol. 7, no. 46, pp. 29042–29050, 2017, doi: 10.1039/c7ra04120a.

C. B. P. Kumar et al., “Protection of mild steel corrosion by three new quinazoline derivatives: experimental and DFT studies,” Surfaces and Interfaces, vol. 18, Mar. 2020, doi: 10.1016/j.surfin.2020.100446.

M. F. Ng, D. J. Blackwood, H. Jin, and T. L. Tan, “DFT Study of Oxygen Reduction Reaction on Chromia and Hematite: Insights into Corrosion Inhibition,” Journal of Physical Chemistry C, vol. 124, no. 25, pp. 13799–13808, Jun. 2020, doi: 10.1021/acs.jpcc.0c03559.

H. Behzadi et al., “A DFT study of pyrazine derivatives and their Fe complexes in corrosion inhibition process,” J Mol Struct, vol. 1086, pp. 64–72, Apr. 2015, doi: 10.1016/j.molstruc.2015.01.008.

J. Radilla, G. E. Negrón-Silva, M. Palomar-Pardavé, M. Romero-Romo, and M. Galván, “DFT study of the adsorption of the corrosion inhibitor 2-mercaptoimidazole onto Fe(1 0 0) surface,” Electrochim Acta, vol. 112, pp. 577–586, 2013, doi: 10.1016/j.electacta.2013.08.151.

N. Ammouchi, H. Allal, Y. Belhocine, S. Bettaz, and E. Zouaoui, “DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum,” J Mol Liq, vol. 300, p. 112309, Feb. 2020, doi: 10.1016/J.MOLLIQ.2019.112309.

I. B. Obot and S. A. Umoren, “Experimental, DFT and QSAR models for the discovery of new pyrazines corrosion inhibitors for steel in oilfield acidizing environment,” Int J Electrochem Sci, vol. 15, no. 9, pp. 9066–9080, Sep. 2020, doi: 10.20964/2020.09.72.

Y. El Bakri, L. Guo, E. H. Anouar, and E. M. Essassi, “Electrochemical, DFT and MD simulation of newly synthesized triazolotriazepine derivatives as corrosion inhibitors for carbon steel in 1 M HCl,” J Mol Liq, vol. 274, pp. 759–769, Jan. 2019, doi: 10.1016/j.molliq.2018.11.048.

Y. Meng et al., “DFT study on H2 and H adsorption and the electronic properties of single atom Cu modified Fe (1 1 1) surface,” Appl Surf Sci, vol. 505, Mar. 2020, doi: 10.1016/j.apsusc.2019.144526.

S. Kamal et al., “Synthesis, characterization and DFT studies of water stable Cd(II) metal–organic clusters with better adsorption property towards the organic pollutant in waste water,” Inorganica Chim Acta, vol. 512, Nov. 2020, doi: 10.1016/j.ica.2020.119872.

B. El Ibrahimi et al., “Theoretical evaluation of some ?-amino acids for corrosion inhibition of copper in acidic medium: DFT calculations, Monte Carlo simulations and QSPR studies,” J King Saud Univ Sci, vol. 32, no. 1, pp. 163–171, Jan. 2020, doi: 10.1016/j.jksus.2018.04.004.

D. K. Kozlica, A. Kokalj, and I. Milošev, “Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium – An electrochemical, XPS, FTIR and DFT study,” Corros Sci, vol. 182, p. 109082, Apr. 2021, doi: 10.1016/J.CORSCI.2020.109082.

A. A. El Hassani et al., “DFT Theoretical Study of 5-(4-R-Phenyl)-1H-tetrazole (R = H; OCH3; CH3; Cl) as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid,” Metals and Materials International, vol. 26, no. 11, pp. 1725–1733, Nov. 2020, doi: 10.1007/s12540-019-00381-5.

A. Dehghani, A. H. Mostafatabar, G. Bahlakeh, and B. Ramezanzadeh, “A detailed study on the synergistic corrosion inhibition impact of the Quercetin molecules and trivalent europium salt on mild steel; electrochemical/surface studies, DFT modeling, and MC/MD computer simulation,” J Mol Liq, vol. 316, Oct. 2020, doi: 10.1016/j.molliq.2020.113914.

F. EL Hajjaji et al., “A detailed electronic-scale DFT modeling/MD simulation, electrochemical and surface morphological explorations of imidazolium-based ionic liquids as sustainable and non-toxic corrosion inhibitors for mild steel in 1 M HCl,” Materials Science and Engineering: B, vol. 289, p. 116232, Mar. 2023, doi: 10.1016/J.MSEB.2022.116232.

A. Salmasifar, M. Edraki, E. Alibakhshi, B. Ramezanzadeh, and G. Bahlakeh, “Combined electrochemical/surface investigations and computer modeling of the aquatic Artichoke extract molecules corrosion inhibition properties on the mild steel surface immersed in the acidic medium,” J Mol Liq, vol. 327, p. 114856, 2021, doi: 10.1016/j.molliq.2020.114856.

M. H. Shahini, M. Keramatinia, M. Ramezanzadeh, B. Ramezanzadeh, and G. Bahlakeh, “Combined atomic-scale/DFT-theoretical simulations & electrochemical assessments of the chamomile flower extract as a green corrosion inhibitor for mild steel in HCl solution,” J Mol Liq, vol. 342, p. 117570, 2021, doi: 10.1016/j.molliq.2021.117570.

S. M. Lashgari, G. Bahlakeh, and B. Ramezanzadeh, “Detailed theoretical DFT computation/molecular simulation and electrochemical explorations of Thymus vulgaris leave extract for effective mild-steel corrosion retardation in HCl solution,” J Mol Liq, vol. 335, p. 115897, 2021, doi: 10.1016/j.molliq.2021.115897.

A. Singh, K. R. Ansari, M. A. Quraishi, and S. Kaya, “Theoretically and experimentally exploring the corrosion inhibition of N80 steel by pyrazol derivatives in simulated acidizing environment,” J Mol Struct, vol. 1206, Apr. 2020, doi: 10.1016/j.molstruc.2020.127685.

N. Arrousse et al., “The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies,” Arabian Journal of Chemistry, vol. 13, no. 7, pp. 5949–5965, Jul. 2020, doi: 10.1016/j.arabjc.2020.04.030.

S. A. Mrani et al., “Experimental, theoretical and MC simulation investigations of the inhibitory efficiency of novel non-toxic pyridazine derivatives inhibition on carbon steel in 1 M HCl solution,” J Mol Liq, vol. 382, Jul. 2023, doi: 10.1016/j.molliq.2023.122043.

S. Echihi et al., “Experimental and theoretical investigation to the mild steel’s corrosion inhibition using pyrazole pyrimidine derivative,” Chemical Data Collections, vol. 46, p. 101049, Aug. 2023, doi: 10.1016/j.cdc.2023.101049.

A. Ramachandran, P. Anitha, S. Gnanavel, and S. Angaiah, “Development of 1-phenyl-3-(4-(pyridin-4-ylmethyl)phenyl)urea derivatives as robust corrosion inhibitors for mild steel in 1 M HCl environment: Insight from ,molecular, experimental, and microscopic-scale modelling approaches,” J Environ Chem Eng, vol. 12, no. 1, p. 111648, Feb. 2024, doi: 10.1016/J.JECE.2023.111648.

H. Lu et al., “Investigation of triazole derivatives as corrosion inhibitors on Q235 steel in NaCl solution: Experimental and theoretical studies,” Colloids Surf A Physicochem Eng Asp, vol. 674, Oct. 2023, doi: 10.1016/j.colsurfa.2023.131892.

K. S. M. Ferigita et al., “Corrosion inhibition of mild steel in acidic media using new oxo-pyrimidine derivatives: Experimental and theoretical insights,” J Mol Struct, vol. 1284, p. 135361, Jul. 2023, doi: 10.1016/J.MOLSTRUC.2023.135361.

A. Hassan, M. S. Numin, K. Jumbri, K. E. Kee, and N. Borhan, “Review on the Recent Development of Fatty Hydrazide as Corrosion Inhibitor in Acidic Medium: Experimental and Theoretical Approaches,” Metals, vol. 12, no. 7. MDPI, Jul. 01, 2022. doi: 10.3390/met12071058.

L. Jiang, Y. Qiang, Z. Lei, J. Wang, Z. Qin, and B. Xiang, “Excellent corrosion inhibition performance of novel quinoline derivatives on mild steel in HCl media: Experimental and computational investigations,” J Mol Liq, vol. 255, pp. 53–63, Apr. 2018, doi: 10.1016/J.MOLLIQ.2018.01.133.

T. K. Sarkar, V. Saraswat, R. K. Mitra, I. B. Obot, and M. Yadav, “Mitigation of corrosion in petroleum oil well/tubing steel using pyrimidines as efficient corrosion inhibitor: Experimental and theoretical investigation,” Mater Today Commun, vol. 26, p. 101862, Mar. 2021, doi: 10.1016/J.MTCOMM.2020.101862.

N. N. Hau and D. Q. Huong, “Effect of aromatic rings on mild steel corrosion inhibition ability of nitrogen heteroatom-containing compounds: Experimental and theoretical investigation,” J Mol Struct, vol. 1277, p. 134884, Apr. 2023, doi: 10.1016/J.MOLSTRUC.2022.134884.

R. Haldhar, C. Jayprakash Raorane, V. K. Mishra, T. Periyasamy, A. Berisha, and S. C. Kim, “Development of different chain lengths ionic liquids as green corrosion inhibitors for oil and gas industries: Experimental and theoretical investigations,” J Mol Liq, vol. 372, Feb. 2023, doi: 10.1016/j.molliq.2022.121168.

N. S. Abdelshafi, M. A. Ibrahim, A. S. Badran, and S. A. Halim, “Experimental and theoretical evaluation of a newly synthesized quinoline derivative as corrosion inhibitor for iron in 1.0 M hydrochloric acid solution,” J Mol Struct, vol. 1250, p. 131750, Feb. 2022, doi: 10.1016/J.MOLSTRUC.2021.131750.

A. Fawzy et al., “A comparative study of pyridine and pyrimidine derivatives based formamidine for copper corrosion inhibition in nitric acid: Experimental and computational exploration,” Int J Electrochem Sci, vol. 19, no. 1, p. 100403, Jan. 2024, doi: 10.1016/J.IJOES.2023.100403.

E. Ech-chihbi et al., “Computational, MD simulation, SEM/EDX and experimental studies for understanding adsorption of benzimidazole derivatives as corrosion inhibitors in 1.0 M HCl solution,” J Alloys Compd, vol. 844, Dec. 2020, doi: 10.1016/j.jallcom.2020.155842.

W. Luo et al., “A new pyridazine derivative synthesized as an efficient corrosion inhibitor for copper in sulfuric acid medium: Experimental and theoretical calculation studies,” J Mol Liq, vol. 341, p. 117370, Nov. 2021, doi: 10.1016/J.MOLLIQ.2021.117370.

C. B. Verma, E. E. Ebenso, I. Bahadur, I. B. Obot, and M. A. Quraishi, “5-(Phenylthio)-3H-pyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl: Experimental and theoretical investigation,” J Mol Liq, vol. 212, pp. 209–218, Dec. 2015, doi: 10.1016/J.MOLLIQ.2015.09.009.

R. Farahati, H. Behzadi, S. M. Mousavi-Khoshdel, and A. Ghaffarinejad, “Evaluation of corrosion inhibition of 4-(pyridin-3-yl) thiazol-2-amine for copper in HCl by experimental and theoretical studies,” J Mol Struct, vol. 1205, Apr. 2020, doi: 10.1016/j.molstruc.2019.127658.

V. C. Anadebe et al., “Multidimensional insight into the corrosion inhibition of salbutamol drug molecule on mild steel in oilfield acidizing fluid: Experimental and computer aided modeling approach,” J Mol Liq, vol. 349, p. 118482, Mar. 2022, doi: 10.1016/J.MOLLIQ.2022.118482.

S. Pour-Ali, R. Tavangar, and S. Hejazi, “Comprehensive assessment of some L-amino acids as eco-friendly corrosion inhibitors for mild steel in HCl: Insights from experimental and theoretical studies,” Journal of Physics and Chemistry of Solids, vol. 181, Oct. 2023, doi: 10.1016/j.jpcs.2023.111550.

K. K. Anupama and A. Joseph, “Experimental and Theoretical Studies on Cinnamomum verum Leaf Extract and One of Its Major Components, Eugenol as Environmentally Benign Corrosion Inhibitors for Mild Steel in Acid Media,” J Bio Tribocorros, vol. 4, no. 2, Jun. 2018, doi: 10.1007/s40735-018-0146-z.

A. Salmasifar, M. Edraki, E. Alibakhshi, B. Ramezanzadeh, and G. Bahlakeh, “Combined electrochemical/surface investigations and computer modeling of the aquatic Artichoke extract molecules corrosion inhibition properties on the mild steel surface immersed in the acidic medium,” J Mol Liq, vol. 327, p. 114856, 2021, doi: 10.1016/j.molliq.2020.114856.

M. H. Shahini, M. Keramatinia, M. Ramezanzadeh, B. Ramezanzadeh, and G. Bahlakeh, “Combined atomic-scale/DFT-theoretical simulations & electrochemical assessments of the chamomile flower extract as a green corrosion inhibitor for mild steel in HCl solution,” J Mol Liq, vol. 342, p. 117570, 2021, doi: 10.1016/j.molliq.2021.117570.

S. M. Lashgari, G. Bahlakeh, and B. Ramezanzadeh, “Detailed theoretical DFT computation/molecular simulation and electrochemical explorations of Thymus vulgaris leave extract for effective mild-steel corrosion retardation in HCl solution,” J Mol Liq, vol. 335, p. 115897, 2021, doi: 10.1016/j.molliq.2021.115897.

Downloads

Published

2024-04-29

Versions

Issue

Section

Articles