A Comparative study of Transfer Learning CNN for Flower Type Classification
DOI:
https://doi.org/10.33633/jais.v8i3.9380Abstract
Flowers are plants that had many types and often found around. But because the many types of flowers, sometimes difficult to distinguish the type from one flower to another. Therefore, in this study, will discuse about the process of identification and classification of flower types, namely daisy, dandelion, rose, sunflower and tulip. The data that would used in this research is image data that consisting of 764 daisy images, 1052 dandelion images, 784 rose images, 733 sunflower images and 984 tulip images. From the total images used, would be divided again into 60% training data, 30% testing data and 10% validation data that would been used to train and evaluate the CNN model. In this study, the classification process would using transfer learning CNN method using the DenseNet and NasNetLarge architectures, which later from these two architectures would compare to find which architecture is best for classifying flower types. The results that obtained after testing in this study are in the flower classification process using the DenseNet architecture to get a test accuracy of 89% and using the NasLargeNet architecture to get a test accuracy of 86%.References
S. Islam, M. F. Ahmed Foysal and N. Jahan, "A Computer Vision Approach to Classify Local Flower using Convolutional Neural Network," 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2020, pp. 1200-1204, doi: 10.1109/ICICCS48265.2020.9121143.
Jia, L., Zhai, H., Yuan, X., Jiang, Y., & Ding, J. (2022). A Parallel Convolution and Decision Fusion-Based Flower Classification Method. Mathematics, 10(15). https://doi.org/10.3390/math10152767
Patel, I., & Patel, S. (2019). Flower identification and classification using computer vision and machine learning techniques. International Journal of Engineering and Advanced Technology, 8(6), 277–285. https://doi.org/10.35940/ijeat.E7555.088619
F. Khalid, A. H. Abdullah and L. N. Abdullah, "SMARTFLORA Mobile Flower Recognition Application Using Machine Learning Tools," 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), Selangor, Malaysia, 2022, pp. 204-209, doi: 10.1109/CSPA55076.2022.9781961.
Farokhah, L. (2020). Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 7(6), 1129-1135.
Hayati, N. (2023). KLASIFIKASI JENIS BUNGA MAWAR MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOUR. In Jurnal Informatika dan Riset (IRIS) (Vol. 1, Issue 1).
Kaur, R., Jain, A., & Kumar, S. (2021). Optimization classification of sunflower recognition through machine learning. Materials Today: Proceedings, 51, 207–211. https://doi.org/10.1016/j.matpr.2021.05.182
Kaur, R., Jain, A., & Kumar, S. (2021). Optimization classification of sunflower recognition through machine learning. Materials Today: Proceedings, 51, 207–211. https://doi.org/10.1016/j.matpr.2021.05.182
Mladenovic, E., Cvejic, S., Jocic, S., Cuk, N., Cukanovic, J., Jockovic, M., & Jeromela, A. M. (2020). Effect of plant density on stem and flower quality of single-stem ornamental sunflower genotypes. Horticultural Science, 47(1), 45–52. https://doi.org/10.17221/10/2019-HORTSCI
Handayati, W., & Sihombing, D. (2019). Study of NPK fertilizer effect on sunflower growth and yield. AIP Conference Proceedings, 2120. https://doi.org/10.1063/1.5115635
Mudita Chandra, M., & Yoannita. (2023). Klasifikasi Jenis Bunga Menggunakan Metode Svm Berdasarkan Citra Dengan Fitur Hsv. Jurnal Indonesia Sosial Teknologi, 4(02), 255–264. https://doi.org/10.59141/jist.v4i02.585
Herizqy, H., Erizal, E., & Nazaruddin, A. (2022). Dandelion Sebagai Objek Penciptaan Karya Seni Lukis. V-art: Journal of Fine Art, 2(1), 1-12. http://dx.doi.org/10.26887/vartjofa.v2i2.3225
Lamawati, S., Juang, D., & Kartika, G. (2019). Budidaya Bunga Potong Tulip (Tulipa gesneriana L.) di Nieuwe Wetering, Belanda Selatan Cultivation of Cut Flower Tulip (Tulipa gesneriana L.) in Nieuwe Wetering, South Holland. In Bul. Agrohorti (Vol. 7, Issue 2).
Coviana, N., & Widagdo, J. (2019). APLIKASI BUNGA TULIP SEBAGAI UNSUR DEKORATIF PADA ALMARI PAKAIAN. SULUH: Jurnal Seni Desain Budaya, 2(2), 144-153. https://doi.org/10.34001/jsuluh.v2i2.1627
Janiesch, C., Zschech, P. & Heinrich, K. Machine learning and deep learning. Electron Markets 31, 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2
Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2020). A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Archives of Computational Methods in Engineering, 27(4), 1071–1092. https://doi.org/10.1007/s11831-019-09344-w
Chen, D., Liu, S., Kingsbury, P., Sohn, S., Storlie, C. B., Habermann, E. B., Naessens, J. M., Larson, D. W., & Liu, H. (2019). Deep learning and alternative learning strategies for retrospective real-world clinical data. In npj Digital Medicine (Vol. 2, Issue 1). Nature Publishing Group. https://doi.org/10.1038/s41746-019-0122-0
O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., Riordan, D., & Walsh, J. (2020). Deep Learning vs. Traditional Computer Vision. Advances in Intelligent Systems and Computing, 943, 128–144. https://doi.org/10.1007/978-3-030-17795-9_10
Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2020). A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Archives of Computational Methods in Engineering, 27(4), 1071–1092. https://doi.org/10.1007/s11831-019-09344-w
Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J., & Socher, R. (2021). Deep learning-enabled medical computer vision. In npj Digital Medicine (Vol. 4, Issue 1). Nature Research. https://doi.org/10.1038/s41746-020-00376-2
Wang, P., Fan, E., & Wang, P. (2021). Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141, 61–67. https://doi.org/10.1016/j.patrec.2020.07.042
Wang, G., Ye, J. C., & de Man, B. (2020). Deep learning for tomographic image reconstruction. In Nature Machine Intelligence (Vol. 2, Issue 12, pp. 737–748). Nature Research. https://doi.org/10.1038/s42256-020-00273-z
Sarvamangala, D. R., & Kulkarni, R. v. (2022). Convolutional neural networks in medical image understanding: a survey. In Evolutionary Intelligence (Vol. 15, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s12065-020-00540-3
Laia, M., Hondro, R. K., & Zebua, T. (2021). Implementasi Pengolahan Citra dengan Menggunakan Metode K-Nearest Neighbor Untuk Mengetahui Daging Ayam Busuk dan Daging Ayam Segar. Jurnal Riset Komputer), 8(2), 2407–389. https://doi.org/10.30865/jurikom.v8i2.2818
Li, Y., Nie, J., & Chao, X. (2020). Do we really need deep CNN for plant diseases identification? Computers and Electronics in Agriculture, 178. https://doi.org/10.1016/j.compag.2020.105803
Bora, M. B., Daimary, D., Amitab, K., & Kandar, D. (2020). Handwritten Character Recognition from Images using CNN-ECOC. Procedia Computer Science, 167, 2403–2409. https://doi.org/10.1016/j.procs.2020.03.293
Narvekar, C., & Rao, M. (2020). Flower classification using CNN and transfer learning in CNN-Agriculture Perspective. Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, 660–664. https://doi.org/10.1109/ICISS49785.2020.9316030
Wang, R., Chen, Z., Zhang, W., & Zhu, Q. (Eds.). (2019). Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019) (Vol. 582). Springer Nature.
Çinar, A., & Yildirim, M. (2020). Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical Hypotheses, 139. https://doi.org/10.1016/j.mehy.2020.109684
Shrestha, G., Deepsikha, Das, M., & Dey, N. (2020). Plant Disease Detection Using CNN. Proceedings of 2020 IEEE Applied Signal Processing Conference, ASPCON 2020, 109–113. https://doi.org/10.1109/ASPCON49795.2020.9276722
Hossain, Md. A., & Alam Sajib, Md. S. (2019). Classification of Image using Convolutional Neural Network (CNN). Global Journal of Computer Science and Technology, 13–18. https://doi.org/10.34257/gjcstdvol19is2pg13
Gholamalinezhad, H., & Khosravi, H. (2020). Pooling methods in deep neural networks, a review. arXiv preprint arXiv:2009.07485. https://doi.org/10.48550/arXiv.2009.07485
Sejuti, Z. A., & Islam, M. S. (2021). An Efficient Method to Classify Brain Tumor using CNN and SVM. International Conference on Robotics, Electrical and Signal Processing Techniques, 644–648. https://doi.org/10.1109/ICREST51555.2021.9331060
Chen, L., Kuang, X., Xu, A., Suo, S., & Yang, Y. (2020). A Novel Network Intrusion Detection System Based on CNN. Proceedings - 2020 8th International Conference on Advanced Cloud and Big Data, CBD 2020, 243–247. https://doi.org/10.1109/CBD51900.2020.00051
Hassan, S. M., Maji, A. K., Jasi?ski, M., Leonowicz, Z., & Jasi?ska, E. (2021). Identification of plant-leaf diseases using cnn and transfer-learning approach. Electronics (Switzerland), 10(12). https://doi.org/10.3390/electronics10121388
Chen, L., Kuang, X., Xu, A., Suo, S., & Yang, Y. (2020). A Novel Network Intrusion Detection System Based on CNN. Proceedings - 2020 8th International Conference on Advanced Cloud and Big Data, CBD 2020, 243–247. https://doi.org/10.1109/CBD51900.2020.00051
Hassan, S. M., Maji, A. K., Jasi?ski, M., Leonowicz, Z., & Jasi?ska, E. (2021). Identification of plant-leaf diseases using cnn and transfer-learning approach. Electronics (Switzerland), 10(12). https://doi.org/10.3390/electronics10121388
N. Aneja and S. Aneja, "Transfer Learning using CNN for Handwritten Devanagari Character Recognition," 2019 1st International Conference on Advances in Information Technology (ICAIT), Chikmagalur, India, 2019, pp. 293-296, doi: 10.1109/ICAIT47043.2019.8987286.
Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2019). Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE, 14(5). https://doi.org/10.1371/journal.pone.0217293
Intyanto, G. (2021). Klasifikasi Citra Bunga dengan Menggunakan Deep Learning: CNN (Convolution Neural Network). Jurnal Arus Elektro Indonesia, 7(3), 80-83. doi:10.19184/jaei.v7i3.28141
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jaya Sumpena

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).