Application of PSO in CNN attribute weighting for banana tree classification based on leaf images

Authors

DOI:

https://doi.org/10.33633/jais.v8i3.9170

Abstract

Banana (Musa paradisiaca) is a very popular fruit in Indonesia. Banana production in Indonesia, with more than 200 types of bananas, accounts for more than 50% of banana production in Asia. Differences in how to consume Ambon bananas and Kepok bananas and their various benefits encourage cultivators to be careful in choosing seeds to avoid mistakes. Distinguishing the seeds of Ambon bananas and kepok bananas is more difficult than distinguishing between Ambon bananas and kepok bananas. This is because the leaves and stems of the seeds look the same. The purpose of this study is to use an optimization algorithm to improve the performance of the image classification algorithm on the image of kepok banana leaves and Ambon bananas to assist in the selection of banana plant seeds that can be used by banana cultivators to get the maximum benefit according to the desired type of banana. The results of this study are used as the basis for making a decision support system to assist in the selection of banana plant seeds that can be used by banana cultivators in order to get the maximum benefit according to the desired type of banana

References

Susi Deliana Siregar, Penyuluh Pertanian Madya, Pusat Penyuluhan Pertanian. Budidaya yang Baik, Hasilkan Pisang Kualitas Ekspor. http://cybex.pertanian.go.id/mobile/artikel/99149/Budidaya-yang-Baik-Hasilkan-Pisang-Kualitas-Ekspor/.

Musita N. Kajian Kandungan dan Karakterisik Pati Resisten dari Berbagai Varietas Pisang. Jurnal Teknologi & Industri Hasil Pertanian. 2012 Dec 20;14(1):68-79.

Arifki HH, Barliana MI. Karakteristik dan Manfaat Tumbuhan Pisang Di Indonesia: Review Artikel. Farmaka. 2018 Nov 10;16(3).

Nurmin N, Sabang SM, Said I. Penentuan Kadar Natrium (Na) dan Kalium (K) dalam Buah Pisang Kepok (Musa paradisiaca L.) Berdasarkan Tingkat Kematangannya. Jurnal Akademika Kimia. 2018;7(3):115-21.

Arifiyana D, Devianti VA. Biosorpsi Logam Besi (Fe) Dalam Media Limbah Cair Artifisial Menggunakan Biosorben Kulit Pisang Kepok (Musa Acuminate). Jurnal Kimia Riset. 2020;5(1).

Rudiyat A, Yulianti R, Indra I. Formulasi Krim Anti Jerawat Ekstrak Etanol Kulit Pisang Kepok (Musa balbisiana Colla). Jurnal Kesehatan Bakti Tunas Husada: Jurnal Ilmu-ilmu Keperawatan, Analis Kesehatan dan Farmasi. 2020 Sep 28;20(2):170-80.

Nafianto I. PEMBUATAN PLASTIK BIODEGRADABLE DARI LIMBAH BONGGOL PISANG KEPOK DENGAN PLASTICIZER GLISEROL DARI MINYAK JELANTAH DAN KO. Integrated Lab Journal. 2019;7(1):75-89.

Chandra MA, Bedi SS. Survey on SVM and their application in image classification. International Journal of Information Technology. 2021 Oct;13:1-1.

Saputra RA, Wasiyanti S, Saefudin DF, Supriyatna A, Wibowo A. Rice leaf disease image classifications using KNN based on GLCM feature extraction. InJournal of Physics: Conference Series 2020 Nov 1 (Vol. 1641, No. 1, p. 012080). IOP Publishing.

Oktafanda E. Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Informatika Ekonomi Bisnis. 2022 Aug 30:72-7.

Anwar GA, Riminarsih D. Klasifikasi Citra Genus Panthera Menggunakan Metode Convolutional Neural Network (Cnn). Jurnal Ilmiah Informatika Komputer. 2020 Feb 8;24(3):220-8.

Syarief M, Setiawan W. Convolutional neural network for maize leaf disease image classification. Telkomnika (Telecommunication Computing Electronics and Control). 2020 Jun 1;18(3):1376-81.

Azlah MA, Chua LS, Rahmad FR, Abdullah FI, Wan Alwi SR. Review on techniques for plant leaf classification and recognition. Computers. 2019 Oct 21;8(4):77.

Shudiq WJ, As AH, Rahman MF. Penentuan Metode Terbaik Dalam Menentukan Jenis Pohon Pisang Menurut Tekstur Daun (Metode K-NN dan SVM). Jurnal Teknologi dan Manajemen Informatika. 2020 Dec 30;6(2):128-36.

Naufal MF. Analisis Perbandingan Algoritma Svm, Knn, Dan Cnn untuk Klasifikasi Citra Cuaca. Jurnal Teknologi Informasi dan Ilmu Komputer. 2021;8(2):311-7.

Choubey DK, Kumar P, Tripathi S, Kumar S. Performance evaluation of classification methods with PCA and PSO for diabetes. Network Modeling Analysis in Health Informatics and Bioinformatics. 2020 Dec;9:1-30.

Paul D, Jain A, Saha S, Mathew J. Multi-objective PSO based online feature selection for multi-label classification. Knowledge-Based Systems. 2021 Jun 21;222:106966.

Choubey DK, Tripathi S, Kumar P, Shukla V, Dhandhania VK. Classification of Diabetes by Kernel based SVM with PSO. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science). 2021 May 1;14(4):1242-55.

Yana YE, Nafi’iyah N. Klasifikasi jenis pisang berdasarkan fitur warna, tekstur, bentuk citra menggunakan SVM dan KNN. Journal of Computer, Information System & Technology Management. 2021 Nov;4(1):5.

Amrozi Y, Yuliati D, Susilo A, Novianto N, Ramadhan R. Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM. Jurnal Sisfokom (Sistem Informasi dan Komputer). 2022 Dec 2;11(3):394-9.

Fiel S, Sablatnig R. Automated identification of tree species from images of the bark, leaves or needles. na; 2010 Nov 14.

Novichasari SI, Sipayung YR. PSO-SVM Untuk Klasifikasi Daun Cengkeh Berdasarkan Morfologi Bentuk Ciri, Warna dan Tekstur GLCM Permukaan Daun. Multimatrix. 2018 Dec 31;1(1).

Falakhi B, Achmal EF, Rizaldi M, Rafi'Athallah RR, Yudistira N. Perbandingan Model AlexNet dan ResNet dalam Klasifikasi Citra Bunga Memanfaatkan Transfer Learning. Jurnal Ilmu Komputer dan Agri-Informatika. 2022 May 31;9(1):70-8..

Singh UP, Chouhan SS, Jain S, Jain S. Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease. IEEE access. 2019 Mar 27;7:43721-9.

Ji M, Zhang K, Wu Q, Deng Z. Multi-label learning for crop leaf diseases recognition and severity estimation based on convolutional neural networks. Soft Computing. 2020 Oct;24:15327-40.

Jayanthi J, Jayasankar T, Krishnaraj N, Prakash NB, Sagai Francis Britto A, Vinoth Kumar K. An intelligent particle swarm optimization with convolutional neural network for diabetic retinopathy classification model. Journal of Medical Imaging and Health Informatics. 2021 Mar 1;11(3):803-9.

Revathi B, Elizabeth SK, Nagaraj P, Birunda SS, Nithya D. Particle Swarm Optimization based Detection of Diabetic Retinopathy using a Novel Deep CNN. In2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS) 2023 Feb 2 (pp. 998-1003). IEEE.

Gajjar R, Gajjar N, Thakor VJ, Patel NP, Ruparelia S. Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform. The Visual Computer. 2021:1-6.

Zhang Y, Yu J, Chen Y, Yang W, Zhang W, He Y. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application. Computers and Electronics in Agriculture. 2022 Jan 1;192:106586

Downloads

Published

2023-11-30