Encryption of Information on Brain Tumor Images Using Vigenere Cipher Algorithm and Least Significant Bits

Authors

  • Renol Burjulius Politeknik Negeri Indramayu
  • Dini Rohmayani Politeknik TEDC Bandung
  • Sonty Lena Politeknik Negeri Indramayu

DOI:

https://doi.org/10.33633/jais.v8i3.8973

Abstract

Cryptography is a branch of existing methods in mathematics which has the goal of being able to maintain the confidentiality of the information contained in the data so that the information is not known by parties who have no interest. Confidentiality of this information is important so that the information sent is not misused irresponsibly. Vigenere Cipher is a method used for cryptography. Vigenere Cipher works by using a tabula recta table where the table contains an alphabet arranged based on the Caesar Cipher shift. In this study, the Vigenere Chiper algorithm will be used to encrypt information into 25 brain tumor images. In the tests carried out on 25 images, the best MSE obtained was 1.541e-05, while the best PSNR was 48.1219, for the best SSIM it was 0.99995, then for the BER value, all images obtained a BER value of 0 and also for the entropy of the best steganography image, which was 6.8204.

Author Biographies

Renol Burjulius, Politeknik Negeri Indramayu

Teknik Informatika

Dini Rohmayani, Politeknik TEDC Bandung

Program Studi Teknik Informatika

References

Suta, I. B. L. M., Sudarma, M., & Satya Kumara, I. N. (2020). Segmentasi Tumor Otak Berdasarkan Citra Magnetic Resonance Imaging Dengan Menggunakan Metode U-NET. Majalah Ilmiah Teknologi Elektro, 19(2), 151. https://doi.org/10.24843/mite.2020.v19i02.p05

Noreen, N., Palaniappan, S., Qayyum, A., Ahmad, I., Imran, M., & Shoaib, M. (2020). A Deep Learning Model Based on Concatenation Approach for the Diagnosis of Brain Tumor. IEEE Access, 8, 55135–55144. https://doi.org/10.1109/ACCESS.2020.2978629

A Deep Learning-based Approach for Colorization of Grayscale Images and Videos. (2023). International Journal of Food and Nutritional Sciences, 11(12). https://doi.org/10.48047/ijfans/v11/i12/194

Alqadi, Z., Abu-Faraj, M., & Alqadi, Z. A. (2021). Improving the Efficiency and Scalability of Standard Methods for Data Cryptography Analysis of Color Image Features Extraction using Texture Methods View Project Improving the Efficiency and Scalability of Standard Methods for Data Cryptography Mua’ad. IJCSNS International Journal of Computer Science and Network Security, 21(12). https://doi.org/10.22937/IJCSNS.2021.21.12.61

Salim, M. Z., Abboud, A. J., & Yildirim, R. (2022). A visual cryptography-based watermarking approach for the detection and localization of image forgery. Electronics (Switzerland), 11(1). https://doi.org/10.3390/electronics11010136

Boussif, M., Aloui, N., & Cherif, A. (2020). Securing DICOM images by a new encryption algorithm using Arnold transform and Vigenère cipher. IET Image Processing, 14(6), 1209–1216. https://doi.org/10.1049/iet-ipr.2019.0042

Qowi, Z., & Hudallah, N. (2021). Combining caesar cipher and hill cipher in the generating encryption key on the vigenere cipher algorithm. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042009

Subramanian, N., Elharrouss, O., Al-Maadeed, S., & Bouridane, A. (2021). Image Steganography: A Review of the Recent Advances. IEEE Access, 9, 23409–23423. https://doi.org/10.1109/ACCESS.2021.3053998

Dhawan, S., & Gupta, R. (2021). Analysis of various data security techniques of steganography: A survey. In Information Security Journal (Vol. 30, Issue 2, pp. 63–87). Bellwether Publishing, Ltd. https://doi.org/10.1080/19393555.2020.1801911

Pramanik, S., Samanta, D., Dutta, S., Ghosh, R., Ghonge, M., & Pandey, D. (2020, December 30). Steganography using Improved LSB Approach and Asymmetric Cryptography. Proceedings of IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation, ICATMRI 2020. https://doi.org/10.1109/ICATMRI51801.2020.9398408

Sharma, K., Aggarwal, A., Singhania, T., Gupta, D., & Khanna, A. (2019). Hiding Data in Images Using Cryptography and Deep Neural Network. Journal of Artificial Intelligence and Systems, 1(1), 143–162. https://doi.org/10.33969/ais.2019.11009

Voleti, L., Balajee, R. M., Vallepu, S. K., Bayoju, K., & Srinivas, D. (2021). A Secure Image Steganography Using Improved Lsb Technique and Vigenere Cipher Algorithm. Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, 1005–1010. https://doi.org/10.1109/ICAIS50930.2021.9395794

Hameed, T. H., & Sadeeq, H. T. (2022). Modified Vigenère cipher algorithm based on new key generation method. Indonesian Journal of Electrical Engineering and Computer Science, 28(2), 954–961. https://doi.org/10.11591/ijeecs.v28.i2.pp954-961

V, B. K., J, B. D., B, C. K., & R Asst Professor, R. B. (2021). A CRYPTO SYSTEM USING VIGENERE AND POLYBIUS CIPHER. In International Journal of Engineering Applied Sciences and Technology (Vol. 6, Issue 2). http://www.ijeast.com

Pujeri*, Dr. U., & Pujeri, Dr. R. (2020). Symmetric Encryption Algorithm using ASCII Values. International Journal of Recent Technology and Engineering (IJRTE), 8(5), 2355–2359. https://doi.org/10.35940/ijrte.E5980.018520

Gutub, A., & Al-Shaarani, F. (2020). Efficient Implementation of Multi-image Secret Hiding Based on LSB and DWT Steganography Comparisons. Arabian Journal for Science and Engineering, 45(4), 2631–2644. https://doi.org/10.1007/s13369-020-04413-w

Sara, U., Akter, M., & Uddin, M. S. (2019). Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. Journal of Computer and Communications, 07(03), 8–18. https://doi.org/10.4236/jcc.2019.73002

Setiadi, D. R. I. M. (2021). PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools and Applications, 80(6), 8423–8444. https://doi.org/10.1007/s11042-020-10035-z

Nilsson, J., & Akenine-Möller, T. (2020). Understanding SSIM. http://arxiv.org/abs/2006.13846

Ko, H. J., Huang, C. T., Horng, G., & WANG, S. J. (2020). Robust and blind image watermarking in DCT domain using inter-block coefficient correlation. Information Sciences, 517, 128–147. https://doi.org/10.1016/j.ins.2019.11.005

Salem, N., Malik, H., & Shams, A. (2019). Medical image enhancement based on histogram algorithms. Procedia Computer Science, 163, 300–311. https://doi.org/10.1016/j.procs.2019.12.112

Downloads

Published

2023-11-30