Watermarking using DCT and DWT on Pneumonia images

Authors

  • Ari Sudrajat Politeknik TEDC Bandung
  • Ayu Hendrati Rahayu Politeknik TEDC Bandung

DOI:

https://doi.org/10.33633/jais.v8i3.8914

Abstract

Watermarking is a branch of the data hiding technique. Watermarking is a technique used to insert a copyright label on an image, so that the copyright of the image can be protected. Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are techniques that can be used to watermark. In this study, the Discrete Cosine Transform and Discrete Wavelet Transform methods will be used to watermark images to 5 different host images. In the tests carried out, watermarking techniques will be compared using DCT, DWT, DCT-DWT combination and DWT-DCT combination. The results obtained in this study were the highest PSNR value obtained at 41.931, the highest SSIM obtained 0.99515, the highest entropy was also obtained at 7.4186, The best UACI value is 0.0071158 and the best NCPR value is obtained at 93.9068% then, for the best CC value is obtained at 0.99953. As well as the NCC value, the value obtained is the same all in each test, namely with a value of 1.

References

Okazaki, T., Ebihara, S., Mori, T., Izumi, S., & Ebihara, T. (2020). Association between sarcopenia and pneumonia in older people. In Geriatrics and Gerontology International (Vol. 20, Issue 1, pp. 7–13). Blackwell Publishing. https://doi.org/10.1111/ggi.13839

Turayev Telmon Temirovich. (2021). CURRENT ISSUES IN THE TREATMENT OF ACUTE COMPLICATED PNEUMONIA IN CHILDREN. Web of Scientist: International Scientific Research Journal, 2(06), 148–154. https://doi.org/10.17605/OSF.IO/HB78J

E. Ayan and H. M. Ünver, "Diagnosis of Pneumonia from Chest X-Ray Images Using Deep Learning," 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 2019, pp. 1-5, doi: 10.1109/EBBT.2019.8741582

Rahman, T., Chowdhury, M. E. H., Khandakar, A., Islam, K. R., Islam, K. F., Mahbub, Z. B., Kadir, M. A., & Kashem, S. (2020). Transfer learning with deep Convolutional Neural Network (CNN) for pneumonia detection using chest X-ray. Applied Sciences (Switzerland), 10(9). https://doi.org/10.3390/app10093233

Mujahid, M., Rustam, F., Álvarez, R., Luis Vidal Mazón, J., Díez, I. de la T., & Ashraf, I. (2022). Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network. Diagnostics, 12(5). https://doi.org/10.3390/diagnostics12051280

Setiawan, W., & Damayanti, F. (2020). Layers Modification of Convolutional Neural Network for Pneumonia Detection. Journal of Physics: Conference Series, 1477(5). https://doi.org/10.1088/1742-6596/1477/5/052055

Maier, A., Syben, C., Lasser, T., & Riess, C. (2019). A gentle introduction to deep learning in medical image processing. In Zeitschrift fur Medizinische Physik (Vol. 29, Issue 2, pp. 86–101). Elsevier GmbH. https://doi.org/10.1016/j.zemedi.2018.12.003

Setiawan, I., Dewanta, W., Nugroho, H. A., Supriyono, H., Tetap Program, D., Manajemen, S., Amik, I., Surakarta, H. B., Yani, J. A., Kartasura, K., & Sukoharjo, K. (2019). Pengolah Citra Dengan Metode Thresholding dengan Matlab R2014A…. Pengolah Citra Dengan Metode Thresholding Dengan Matlab R2014A. In Jurnal Media Infotama (Vol. 15, Issue 2).

Jumadi, J., Yupianti, Y., & Sartika, D. (2021). Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering. JST (Jurnal Sains dan Teknologi), 10(2), 148-156.

Fadjeri, A., Saputra, B. A., Adri Ariyanto, D. K., & Kurniatin, L. (2022). Karakteristik Morfologi Tanaman Selada Menggunakan Pengolahan Citra Digital. Jurnal Ilmiah SINUS, 20(2), 1. https://doi.org/10.30646/sinus.v20i2.601

Elhoseny, M., Shankar, K., Lakshmanaprabu, S. K., Maseleno, A., & Arunkumar, N. (2020). Hybrid optimization with cryptography encryption for medical image security in Internet of Things. In Neural Computing and Applications (Vol. 32, Issue 15, pp. 10979–10993). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00521-018-3801-x

Chandy, A. (2019). A REVIEW ON IOT BASED MEDICAL IMAGING TECHNOLOGY FOR HEALTHCARE APPLICATIONS. Journal of Innovative Image Processing, 1(01), 51–60. https://doi.org/10.36548/jiip.2019.1.006

Kumaraswamy, E., Mahesh Kumar, G., Mahender, K., Bukkapatnam, K., & Prasad, C. R. (2020). Digital Watermarking: State of the Art and Research Challenges in Health Care & Multimedia Applications. IOP Conference Series: Materials Science and Engineering, 981(3). https://doi.org/10.1088/1757-899X/981/3/032031

Wadhera, S., Kamra, D., Rajpal, A., Jain, A., & Jain, V. (2022). A comprehensive review on digital image watermarking. arXiv preprint arXiv:2207.06909.

https://doi.org/10.48550/arXiv.2207.06909

Kumar, C., Singh, A. K., & Kumar, P. (2020). Dual watermarking: An approach for securing digital documents. Multimedia Tools and Applications, 79(11–12), 7339–7354. https://doi.org/10.1007/s11042-019-08314-5

Harahap, M. K., & Khairina, N. (2021). Copyright Protection of Scientific Works using Digital Watermarking by Embedding DOI QR Code. Journal of Computer Networks, Architecture and High Performance Computing, 3(2), 234–240. https://doi.org/10.47709/cnahpc.v3i2.1064

Begum, M., Ferdush, J., & Uddin, M. S. (2022). A Hybrid robust watermarking system based on discrete cosine transform, discrete wavelet transform, and singular value decomposition. Journal of King Saud University - Computer and Information Sciences, 34(8), 5856–5867. https://doi.org/10.1016/j.jksuci.2021.07.012

Yuan, Z., Liu, D., Zhang, X., & Su, Q. (2020). New image blind watermarking method based on two-dimensional discrete cosine transform. Optik, 204. https://doi.org/10.1016/j.ijleo.2019.164152

Kuraparthi, S., Kollati, M., & Kora, P. (2019). Robust optimized discrete wavelet transform-singular value decomposition based video watermarking. Traitement Du Signal, 36(6), 565–573. https://doi.org/10.18280/ts.360612

R. S. Kavitha, U. Eranna and M. N. Giriprasad, "DCT-DWT Based Digital Watermarking and Extraction using Neural Networks," 2020 International Conference on Artificial Intelligence and Signal Processing (AISP), Amaravati, India, 2020, pp. 1-5, doi: 10.1109/AISP48273.2020.9073104.

Abdulrahman, A. K., & Ozturk, S. (2019). A novel hybrid DCT and DWT based robust watermarking algorithm for color images. Multimedia Tools and Applications, 78(12), 17027–17049. https://doi.org/10.1007/s11042-018-7085-z

Utami, M., Rismawan, T., Ristian, U., Rekayasa, J., Komputer, S., Mipa, F., Tanjungpura, U., Prof, J., & Nawawi, H. H. (2022). Coding : Jurnal Komputer dan Aplikasi IMPLEMENTASI METODE DISCRETE WAVELET TRANSFORM (DWT) PADA WATERMARKING CITRA DIGITAL KEASLIAN KARYA BERBASIS WEB. http://dx.doi.org/10.26418/coding.v10i01.52736

Lakshmi Sirisha, B. (2020). Image steganography based on SVD and DWT techniques. Journal of Discrete Mathematical Sciences and Cryptography, 23(3), 779–786. https://doi.org/10.1080/09720529.2019.1698801

Sara, U., Akter, M., & Uddin, M. S. (2019). Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. Journal of Computer and Communications, 07(03), 8–18. https://doi.org/10.4236/jcc.2019.73002

Setiadi, D. R. I. M. (2021). PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools and Applications, 80(6), 8423–8444. https://doi.org/10.1007/s11042-020-10035-z

Nilsson, J., & Akenine-Möller, T. (2020). Understanding SSIM. http://arxiv.org/abs/2006.13846

Salem, N., Malik, H., & Shams, A. (2019). Medical image enhancement based on histogram algorithms. Procedia Computer Science, 163, 300–311. https://doi.org/10.1016/j.procs.2019.12.112

Hidayati, L. N., Fitriana, G. F., & Adam, I. F. (2021). Perbandingan Keacakan Citra Enkripsi Algoritma AES dan Camelia Uji NPCR dan UACI. JURIKOM (Jurnal Riset Komputer), 8(6), 274. https://doi.org/10.30865/jurikom.v8i6.3624

Downloads

Published

2023-11-30