Time Series Forecasting of Top 3 Ranking Cryptocurrencies
DOI:
https://doi.org/10.33633/jais.v8i2.8435Abstract
Cryptocurrency has become a phenomenon worldwide. Although not all countries have legalized it, it is considered a promising investment asset. Currently, there are three top-ranking cryptocurrencies: Bitcoin, Ethereum, and Tether. This research aims to compare the performance of five forecasting algorithms, namely Autoregressive Integrated Moving Average (ARIMA), Neural Network, Support Vector Machine, Linear Regression, and Generalized Linear Model, using the dataset of Bitcoin, Ethereum, and Tether cryptocurrencies. The research methodology employed is Knowledge Discovery In Databases (KDD). The technique involves assessing the performance based on the Root Mean Square Error (RMSE) and comparing the results to find the most optimal model performance. The research findings indicate that for Bitcoin cryptocurrency, the Neural Network algorithm produced the most optimal results with an RMSE of 9180.534. For Ethereum cryptocurrency, the Neural Network algorithm demonstrated the best performance with an RMSE value of 537.528. Furthermore, for Tether cryptocurrency, the ARIMA algorithm yielded the best performance with an RMSE value of 0.003. Keywords – bitcoin, cryptocurrency, ethereum, forecasting, tetherReferences
M. N. Adhar, Y. Prayudi, and E. Ramadhani, “Analisis Artefak Digital Aplikasi Dompet Cryptocurrency Tokocrypto pada Android,” JIIP (Jurnal Ilm. Ilmu Pendidikan), vol. 6, no. 5, pp. 3552–3559, 2023, [Online]. Available: http://jiip.stkipyapisdompu.ac.id/jiip/index.php/JIIP/article/view/2024/1793.
M. R. Sampurna, F. Y. Dharta, and D. Kurniansyah, “Komunikasi Persuasif Cuantomonologi Dalam Meningkatkan Pengetahuan Masyarakat Terhadap Cryptocurrency Di Kabupaten Karawang,” J. Ilm. Wahana Pendidik., vol. 9, no. 9, pp. 639–648, 2023, doi: doi.org/10.5281/zenodo.7969711.
Z. L. Hudaaka and I. Hanifuddin, “Kejelasan sil ‘ ah Objektivikasi Cryptocurrency pada Aplikasi Pintu,” J. Ilm. Ekon. Islam, vol. 9, no. 1, pp. 935–943, 2023.
yahoo finance, “Matching Cryptocurrencies,” yahoo.finance.com, 2023. https://finance.yahoo.com/crypto/.
S. Saadah and H. Salsabila, “Prediksi Harga Bitcoin Menggunakan Metode Random Forest (Studi Kasus: Data Acak Pada Awal Masa Pandemic Covid-19),” J. Komput. Terap., vol. 7, no. Vol. 7 No. 1 (2021), pp. 24–32, 2021, doi: 10.35143/jkt.v7i1.4618.
M. F. Chania, O. Sara, and I. Sadalia, “Analisis Risk dan Return Investasi pada Ethereum dan Saham LQ45,” Stud. Ilmu Manaj. dan Organ., vol. 2, no. 2, pp. 139–150, 2021, doi: 10.35912/simo.v2i2.669.
Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin,” J. RESPONSIF, vol. 4, no. 2, pp. 118–125, 2022.
Y. D. Wibowo and R. Somya, “Penerapan Data Mining Untuk Memprediksi Harga Cryptocurrency Ethereum Menggunakan Metode Backpropagation Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 1, pp. 273–286, 2023.
M. F. Rizkilloh and S. Widyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.
Mikhael, F. Andreas, and U. Enri, “Perbandingan Algoritma Linear Regression, Neural Network, Deep Learning, Dan K-Nearest Neighbor (K-Nn) Untuk Prediksi Harga Bitcoin,” JSI J. Sist. Inf., vol. 14, no. 1, pp. 2450–2464, 2022, [Online]. Available: http://ejournal.unsri.ac.id/index.php/jsi/index.
B. Molina Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso, “Survey of Network Intrusion Detection Methods from the Perspective of the Knowledge Discovery in Databases Process,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2451–2479, 2020, doi: 10.1109/TNSM.2020.3016246.
I. T. Julianto, D. Kurniadi, and F. M. Khoiriyyah, “Price Prediction of Non-Fungible Tokens (NFTs) using Data Mining Prediction Algorithm,” in 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), Feb. 2023, pp. 633–637, doi: 10.1109/ICCoSITE57641.2023.10127679.
I. T. Julianto, D. Kurniadi, F. A. Fauziah, and R. Rohmanto, “Improvement of Data Mining Models using Forward Selection and Backward Elimination with Cryptocurrency Datasets,” J. Appl. Intell. Syst., vol. 8, no. 1, pp. 100–109, 2023.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Data Mining Algorithm Testing For SAND Metaverse Forecasting,” J. Appl. Intell. Syst., vol. 7, no. 3, pp. 259–267, 2022.
A. Y. Pramudya, A. Kurniawati, and D. Agusten, “Implementasi Metode Autoregressive Integrated Moveing Average (ARIMA) pada Aplikasi Peramalan Harga Saham Berbasis Website,” J. Ilm. Komputasi, vol. 22, no. 1, pp. 105–112, 2023.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison Of Data Mining Algorithm For Forecasting Bitcoin Crypto Currency Trends,” JUTIF, vol. 3, no. 2, pp. 245–248, 2022.
A. D. Savitri, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model RFM Pada Klinik Kecantikan (Studi Kasus : Belle Crown Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2957–2966, 2018.
V. Mandailina, Abdillah, and Syaharuddin, “Analisis Tingkat Akurasi Variasi Algoritma Min-Max Backpropagation sebagai Pre-Processing Data Time Series,” Techno.COM, vol. 22, no. 2, pp. 299–300, 2023.
S. Ayu, R. Srg, and M. Zarlis, “Klasifikasi Citra Daun dengan GLCM ( Gray Level Co-Occurence ) dan Leaf Image Clasification with GLCM ( Gray Level Co-Occurence ) and K-NN ( K-Nearest Neighbor ),” Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 477–488, 2022, doi: 10.30812/matrik.v21i2.1572.
W. W. Kristianto and C. Rudianto, “Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K- Means Clustering ( Studi Kasus Toko Sepatu Kakikaki ),” J. Pendidik. Teknol. Inf., vol. 5, no. 2, pp. 90–98, 2022.
Abdussalam Amrullah, Intam Purnamasari, Betha Nurina Sari, Garno, and Apriade Voutama, “Analisis Cluster Faktor Penunjang Pendidikan Menggunakan Algoritma K-Means (Studi Kasus: Kabupaten Karawang),” J. Inform. dan Rekayasa Elektron., vol. 5, no. 2, pp. 244–252, 2022, doi: 10.36595/jire.v5i2.701.
A. Sukmawati, H. M. . Basri, and M. Akhir, “Pembentukan Karakter Berbasis Keteladanan Guru Dan Pembiasaan Murid Sit Al Biruni Jipang Kota Makassar,” Educ. Hum. Dev. J., vol. 5, no. 1, pp. 91–99, 2020, doi: 10.33086/ehdj.v5i1.1453.
G. Feng, M. Fan, and Y. Chen, “Analysis and Prediction of Students’ Academic Performance Based on Educational Data Mining,” IEEE Access, vol. 10, pp. 19558–19571, 2022, doi: 10.1109/ACCESS.2022.3151652.
M. Benzekr? and H. Özütler, “On the Predictability of Bitcoin Price Movements: A Short-term Price Prediction with ARIMA,” J. Econ. Policy Res. / ?ktisat Polit. Ara?t?rmalar? Derg., vol. 8, no. 2, pp. 293–309, 2021, doi: 10.26650/jepr.946081.
A. Tasari, D. Dinata Tarigan, E. Nia, D. B. Purba, K. Saputra, and I. Artikel, “Perbandingan Algoritma Support Vector Machine dan KNN dalam Memprediksi Struktur Sekunder Protein,” J. Inform., vol. 9, no. 2, pp. 172–179, 2022, [Online]. Available: https://raw.githubusercontent.com/JiayingLi/Pr.
F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 1, p. 23, 2021, doi: 10.23887/janapati.v10i1.31035.
Yunitasari, H. S. Hopipah, and R. Mayasari, “Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-nearest neighbor (k-NN) and Naive Bayes,” Technomedia J., vol. 6, no. 1, pp. 99–110, 2021, doi: 10.33050/tmj.v6i1.1531.
M. M. Sidabutar and G. Firmansyah, “Comparison of Linear Regression , Neural Net , and ARIMA Methods For Sales Prediction of Instrumentation and Control Products in PT . Sarana Instrument,” JRSSEM, vol. 2, no. 8, pp. 1694–1705, 2023.
B. Pradito and D. S. Purnia, “Komparasi Algoritma Linear Regression Dan Neural Network Untuk Memprediksi Nilai Kurs Mata Uang,” Evolusi J. Sains dan Manaj., vol. 10, no. 2, pp. 64–71, 2022.
S. C. Dewi, A. M. Siregar, and D. S. Kusumaningrum, “Pengelompokan Jumlah Sumber Daya Manusia Kesehatan Puskesmas untuk Menunjang Pemerataan pada Provinsi Jawa Tengah Menggunakan Algoritma K-Means,” Sci. Student J. Information, Technol. Sci., vol. 1, no. 2, pp. 86–94, 2020.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).