Classification and Regression Trees (CART) Algorithm for Employee Selection

Aulia Rahmawati, Rizal Muhammad Affandi, Dea Debora Aprillia, Daffa Maulana, Zudha Pratama, Moch. Sjamsul Hidajat

Abstract


Recruitment is the main key in an effort to improve the quality of human resources in a company. Good or bad employees greatly affect the quality of the company. Therefore, it is necessary to be thorough and take a long time in screening applicants in order to get competent, professional and as expected prospective employees. The absence of professional staff to conduct employee selection is the background of this research. So the researcher uses the CART algorithm for the classification of employee recruitment, so it is hoped that it can help companies in conducting employee selection. The dataset was obtained from the selection of freelance daily workers at the Pati Regency Civil Service Police Unit in 2018, totaling 290 prospective employees. Based on calculations on 5-fold cross validation, the resulting accuracy is 98.27%, precision is 99.13% and recall is 96.88%.

Full Text:

PDF

References


A. Azar, M. V. Sebt, P. Ahmadi, dan A. Rajaeian, “A model for personnel selection with a data mining approach: A case study in a commercial bank,” SA J. Hum. Resour. Manag., vol. 11, no. 1, hal. 1–10, Apr 2013.

N. P. Wong, F. N. S. Damanik, C. -, E. S. Jaya, dan R. Rajaya, “Perbandingan Algoritma C4.5 dan Classification and Regression Tree (CART) Dalam Menyeleksi Calon Karyawan,” J. SIFO Mikroskil, vol. 20, no. 1, hal. 11–18, Apr 2019.

C. Melina Taurisa dan I. Ratnawati, “ANALISIS PENGARUH BUDAYA ORGANISASI DAN KEPUASAN KERJA TERHADAP KOMITMEN ORGANISASIONAL DALAM MENINGKATKAN KINERJA KARYAWAN (Studi pada PT. Sido Muncul Kaligawe Semarang),” J. Bisnis dan Ekon., vol. 19, no. 2, hal. 170187, 2012.

S. Pahmi, S. Saepudin, N. Maesarah, U. I. Solehudin, dan Wulandari, “Implementation of CART (Classification and Regression Trees) Algorithm for Determining Factors Affecting Employee Performance,” in 2018 International Conference on Computing, Engineering, and Design (ICCED), 2018, hal. 57–62.

R. K. Amin, Indwiarti, dan Y. Sibaroni, “Implementation of decision tree using C4.5 algorithm in decision making of loan application by debtor (Case study: Bank pasar of Yogyakarta Special Region),” in 2015 3rd International Conference on Information and Communication Technology, ICoICT 2015, 2015, vol. 0, hal. 75–80.

S. Sarkar, R. Raj, S. Vinay, J. Maiti, dan D. K. Pratihar, “An optimization-based decision tree approach for predicting slip-trip-fall accidents at work,” Saf. Sci., vol. 118, no. March, hal. 57–69, Okt 2019.

X. Zhu, J. Wang, H. Yan, dan S. Wu, “Research and application of the improved algorithm C4.5 on decision tree,” in Proceedings of the International Symposium on Test and Measurement, 2009, vol. 2, hal. 184–187.

B. HSSINA, A. MERBOUHA, H. EZZIKOURI, dan M. ERRITALI, “A comparative study of decision tree ID3 and C4.5,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 2, 2014.

R. K. Dinata, F. Fajriana, dan K. Khairunnisa, “PENERAPAN ALGORITMA CLASSIFICATION AND REGRESSION TREES (CART) PADA PENERIMAAN ANGGOTA BARU UNIT KEGIATAN MAHASISWA (UKM) DI UNIVERSITAS MALIKUSSALEH BERBASIS WEB,” TECHSI - J. Tek. Inform., vol. 10, no. 2, hal. 74, Okt 2018.

H. S. Pakpahan, F. Indar, dan M. Wati, “Penerapan Algoritma Cart Decision Tree Pada Penentuan Penerima Program Bantuan Pemerintah Daerah Kabupaten Kutai Kartanegara,” J. Rekayasa Teknol. Inf., vol. 2, no. 1, hal. 27, Jun 2018.

N. Indah Prabawati, Widodo, dan H. Ajie, “Kinerja Algoritma Classification And Regression Tree (Cart) dalam Mengklasifikasikan Lama Masa Studi Mahasiswa yang Mengikuti Organisasi di Universitas Negeri Jakarta,” PINTER J. Pendidik. Tek. Inform. dan Komput., vol. 3, no. 2, hal. 139–145, Des 2019.

F. E. Pratiwi dan I. Zain, “Klasifikasi Pengangguran Terbuka Menggunakan CART (Classification and Regression Tree) di Provinsi Sulawesi Utara,” J. Sains dan Seni ITS, vol. 3, no. 1, hal. D54–D59, 2014.

M. Mardiani, “Desain Model Data Mining pada Model SECI untuk Pemetaan dan Ekstraksi Pengetahuan Kompetensi Lulusan,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, hal. 1607–1614, Sep 2021.

R. Rismayanti, “Implementasi Algoritma C4.5 Untuk Menentukan Penerima Beasiswa Di Stt Harapan Medan,” J. Media Infotama, vol. 12, no. 2, hal. 116–120, 2017.

E. Y. S. Ritno, N. A. Hasibuan, dan Fadlina, “IMPLEMENTASIALGORITMA CLASIFICATION ANDREGRESSION TREES ( CART ) DALAM KLASIFIKASI EKONOMI KELUARGA PADA DESADAGANG KELAMBIR TG . MORAWA,” Maj. Ilm. INTI, vol. 6, no. 1, hal. 66–72, 2018.

A. B. Siregar, E. Buulolo, dan P. Ginting, “Pemanfaatan Algoritma Classification and Regression Tress ( Cart ) Untuk Memprediksi Omset Spanduk Pada Cv . Moeha,” Konf. Nas. Teknol. Inf. dan Komput., vol. I, hal. 347–354, 2017.




DOI: https://doi.org/10.33633/jais.v7i3.7201

Article Metrics

Abstract view : 104 times
PDF - 123 times

Refbacks

  • There are currently no refbacks.


Flag Counter

 

 

 

 

Journal of Applied Intelligent System (e-ISSN : 2502-9401p-ISSN : 2503-0493) is published by Department of Informatics Universitas Dian Nuswantoro Semarang and IndoCEISS.

  

 

Journal of Applied Intelligent System indexed by :


This journal is under licensed of Creative Commons Attribution 4.0 International License.

Visitor Stats