Classification and Regression Trees (CART) Algorithm for Employee Selection
DOI:
https://doi.org/10.33633/jais.v7i3.7201Abstract
Recruitment is the main key in an effort to improve the quality of human resources in a company. Good or bad employees greatly affect the quality of the company. Therefore, it is necessary to be thorough and take a long time in screening applicants in order to get competent, professional and as expected prospective employees. The absence of professional staff to conduct employee selection is the background of this research. So the researcher uses the CART algorithm for the classification of employee recruitment, so it is hoped that it can help companies in conducting employee selection. The dataset was obtained from the selection of freelance daily workers at the Pati Regency Civil Service Police Unit in 2018, totaling 290 prospective employees. Based on calculations on 5-fold cross validation, the resulting accuracy is 98.27%, precision is 99.13% and recall is 96.88%.References
A. Azar, M. V. Sebt, P. Ahmadi, dan A. Rajaeian, “A model for personnel selection with a data mining approach: A case study in a commercial bank,” SA J. Hum. Resour. Manag., vol. 11, no. 1, hal. 1–10, Apr 2013.
N. P. Wong, F. N. S. Damanik, C. -, E. S. Jaya, dan R. Rajaya, “Perbandingan Algoritma C4.5 dan Classification and Regression Tree (CART) Dalam Menyeleksi Calon Karyawan,” J. SIFO Mikroskil, vol. 20, no. 1, hal. 11–18, Apr 2019.
C. Melina Taurisa dan I. Ratnawati, “ANALISIS PENGARUH BUDAYA ORGANISASI DAN KEPUASAN KERJA TERHADAP KOMITMEN ORGANISASIONAL DALAM MENINGKATKAN KINERJA KARYAWAN (Studi pada PT. Sido Muncul Kaligawe Semarang),” J. Bisnis dan Ekon., vol. 19, no. 2, hal. 170187, 2012.
S. Pahmi, S. Saepudin, N. Maesarah, U. I. Solehudin, dan Wulandari, “Implementation of CART (Classification and Regression Trees) Algorithm for Determining Factors Affecting Employee Performance,” in 2018 International Conference on Computing, Engineering, and Design (ICCED), 2018, hal. 57–62.
R. K. Amin, Indwiarti, dan Y. Sibaroni, “Implementation of decision tree using C4.5 algorithm in decision making of loan application by debtor (Case study: Bank pasar of Yogyakarta Special Region),” in 2015 3rd International Conference on Information and Communication Technology, ICoICT 2015, 2015, vol. 0, hal. 75–80.
S. Sarkar, R. Raj, S. Vinay, J. Maiti, dan D. K. Pratihar, “An optimization-based decision tree approach for predicting slip-trip-fall accidents at work,” Saf. Sci., vol. 118, no. March, hal. 57–69, Okt 2019.
X. Zhu, J. Wang, H. Yan, dan S. Wu, “Research and application of the improved algorithm C4.5 on decision tree,” in Proceedings of the International Symposium on Test and Measurement, 2009, vol. 2, hal. 184–187.
B. HSSINA, A. MERBOUHA, H. EZZIKOURI, dan M. ERRITALI, “A comparative study of decision tree ID3 and C4.5,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 2, 2014.
R. K. Dinata, F. Fajriana, dan K. Khairunnisa, “PENERAPAN ALGORITMA CLASSIFICATION AND REGRESSION TREES (CART) PADA PENERIMAAN ANGGOTA BARU UNIT KEGIATAN MAHASISWA (UKM) DI UNIVERSITAS MALIKUSSALEH BERBASIS WEB,” TECHSI - J. Tek. Inform., vol. 10, no. 2, hal. 74, Okt 2018.
H. S. Pakpahan, F. Indar, dan M. Wati, “Penerapan Algoritma Cart Decision Tree Pada Penentuan Penerima Program Bantuan Pemerintah Daerah Kabupaten Kutai Kartanegara,” J. Rekayasa Teknol. Inf., vol. 2, no. 1, hal. 27, Jun 2018.
N. Indah Prabawati, Widodo, dan H. Ajie, “Kinerja Algoritma Classification And Regression Tree (Cart) dalam Mengklasifikasikan Lama Masa Studi Mahasiswa yang Mengikuti Organisasi di Universitas Negeri Jakarta,” PINTER J. Pendidik. Tek. Inform. dan Komput., vol. 3, no. 2, hal. 139–145, Des 2019.
F. E. Pratiwi dan I. Zain, “Klasifikasi Pengangguran Terbuka Menggunakan CART (Classification and Regression Tree) di Provinsi Sulawesi Utara,” J. Sains dan Seni ITS, vol. 3, no. 1, hal. D54–D59, 2014.
M. Mardiani, “Desain Model Data Mining pada Model SECI untuk Pemetaan dan Ekstraksi Pengetahuan Kompetensi Lulusan,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, hal. 1607–1614, Sep 2021.
R. Rismayanti, “Implementasi Algoritma C4.5 Untuk Menentukan Penerima Beasiswa Di Stt Harapan Medan,” J. Media Infotama, vol. 12, no. 2, hal. 116–120, 2017.
E. Y. S. Ritno, N. A. Hasibuan, dan Fadlina, “IMPLEMENTASIALGORITMA CLASIFICATION ANDREGRESSION TREES ( CART ) DALAM KLASIFIKASI EKONOMI KELUARGA PADA DESADAGANG KELAMBIR TG . MORAWA,” Maj. Ilm. INTI, vol. 6, no. 1, hal. 66–72, 2018.
A. B. Siregar, E. Buulolo, dan P. Ginting, “Pemanfaatan Algoritma Classification and Regression Tress ( Cart ) Untuk Memprediksi Omset Spanduk Pada Cv . Moeha,” Konf. Nas. Teknol. Inf. dan Komput., vol. I, hal. 347–354, 2017.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).