Expert System of Facial Skin Type Diagnosis and Skincare Recommendation Based on Certainty Factor

Authors

  • Dadan Saepul Ramdan Politeknik TEDC Bandung
  • Castaka Agus Sugianto Politeknik TEDC Bandung
  • Rizqy Dimas Monica Politeknik TEDC Bandung

DOI:

https://doi.org/10.33633/jais.v7i3.7150

Abstract

Facial treatment is an important need for everyone because the first sight of meeting someone is to see their face. Generally, facial skin type is just normal skin. However, several factors such as the environment, air, food, facial hygiene, and so on can affect the type of human facial skin. In this experiment, there were 5 types of facial skin, namely normal skin, dry skin, oily skin, combination skin, and sensitive skin. With the existence of various skin types, it makes some people confused in determining the type of facial skin. This also affects the selection of skincare or facial care according to the indications of each facial skin. Therefore an expert system was created to diagnose facial skin types. An expert system is a man-made system that is used to solve problems like an expert with knowledge from human to computer, although it does not give 100% absolute results, but expert systems are still helpful.

References

Suharjono, Tursina, dan H. Sastyapratiwi, “Implementasi Metode Certainty Factor Dalam Mendiagnosa Penyakit Kulit,” J. Sist. dan Teknol. Inf., vol. 4, no. 1, hal. 1–5, 2016.

Y. Findawati dan A. I. Afrina, “Expert system diagnose disease dermatitis using web based certainty factor,” IOP Conf. Ser. Mater. Sci. Eng., vol. 403, no. 1, hal. 012068, Okt 2018.

N. A. Rahmi dan G. W. Nurcahyo, “Sistem Pakar dalam Membandingkan Metode Forward Chaining dengan Certainty Factor untuk Mengidentifikasi Jenis Kulit Wajah,” J. Sistim Inf. dan Teknol., vol. 3, hal. 257–262, Sep 2021.

D. P. S. Setyohadi, R. A. Octavia, dan T. D. Puspitasari, “An Expert System for Diagnosis of Broiler Diseases using Certainty Factor,” J. Phys. Conf. Ser., vol. 953, no. 1, hal. 012118, Jan 2018.

Nia Nofia Mitra dan G. W. Nurcahyo, “Sistem Pakar Menggunakan Metode Certainty Factor Dalam Akurasi Identifikasi Jenis Penyakit alergi Kulit Pada Balita,” J. Inf. dan Teknol., vol. 2, hal. 4–9, Sep 2020.

R. Pebrianto, S. N. Nugraha, dan W. Gata, “Perancangan Sistem Pakar Penentuan Jenis Kulit Wajah Menggunakan Metode Certainty Factor,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, hal. 83–93, Mei 2020.

Y. K. Kumarahadi, M. Z. Arifin, S. Pambudi, T. Prabowo, dan K. Kusrini, “SISTEM PAKAR IDENTIFIKASI JENIS KULIT WAJAH DENGAN METODE CERTAINTY FACTOR,” J. Teknol. Inf. dan Komun., vol. 8, no. 1, hal. 21–27, Apr 2020.

I. H. Santi dan B. Andari, “Sistem Pakar Untuk Mengidentifikasi Jenis Kulit Wajah dengan Metode Certainty Factor,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 3, no. 2, hal. 159, Jul 2019.

S. Sarinawati, G. J. Yanris, dan R. Muti’ah, “Design and Build Expert System Application for Diagnosing Facial Skin Disease based on Android,” Sinkron, vol. 7, no. 2, hal. 737–745, Mei 2022.

F. Hamedan, A. Orooji, H. Sanadgol, dan A. Sheikhtaheri, “Clinical decision support system to predict chronic kidney disease: A fuzzy expert system approach,” Int. J. Med. Inform., vol. 138, no. 1, hal. 104134, Jun 2020.

S. M. Hardi, D. P. D. Siregar, dan Elviwani, “Diagnosis of Facial Skin Disease in Expert System Using Fuzzy Sugeno Method,” J. Phys. Conf. Ser., vol. 1898, no. 1, hal. 012021, Jun 2021.

A. Yanuar, E. Wahyuni, dan D. Wiyanti, “Certainty Factor Method for Neurological Disease Diagnosis Based on Symptoms,” in Proceedings of the The 1st International Conference on Computer Science and Engineering Technology Universitas Muria Kudus, 2018, hal. 1–6.

M. Jufri, “Designing an Expert System for Diagnosing Otitis Disease Using Forward Chaining and Certainty Factor Methods,” Int. J. Inf. Syst. Technol., vol. 6, no. 158, hal. 282–289, 2022.

H. Thakkar, V. Shah, H. Yagnik, dan M. Shah, “Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis,” Clin. eHealth, vol. 4, hal. 12–23, 2021.

I. K. Mujawar dan B. T. Jadhav, “Web-based Fuzzy Expert System for Diabetes Diagnosis,” Int. J. Comput. Sci. Eng., vol. 7, no. 2, hal. 995–1000, Feb 2019.

Downloads

Published

2022-12-28