Visitor Prediction Decision Support System at Dieng Tourism Objects Using the K-Nearest Neighbor Method

Authors

  • Eko Hari Rachmawanto Universitas Dian Nuswantoro Semarang http://orcid.org/0000-0001-6014-1903
  • Christy Atika Sari Universitas Dian Nuswantoro Semarang
  • Heru Pramono Universitas Dian Nuswantoro Semarang
  • Wellia Shinta Sari Universitas Dian Nuswantoro Semarang

DOI:

https://doi.org/10.33633/jais.v7i2.6821

Abstract

A tourist target is anything that attracts a visitor or tourist to come to visit a place or area. Tourism goods play an important role in a country or region, becoming a source of national foreign exchange, increasing human resources, and improving the economy of surrounding communities. The problem posed in this study is how to implement a decision support system in predicting visitor numbers for Dieng tourists using the k-nearest neighbor method. The purpose of this study is to help the local government and surrounding communities to improve facilities such as restaurants, places of worship, parking lots, clean toilets so that tourists can feel safe and comfortable when visiting Dieng. Helps manage tourism targets. is what you give. These attractions using a decision support system as a process to predict visitors. The number of visitors who visited in December 2017 was 421,394, which serves as a reference for predicting the number of visitors who will visit Dieng in the following year. The predicted result is 29569.25 visitors with a parameter value of k = 8 and a minimum RMSE value of k = 1/0.

References

Ningsih, A. S., Waspiah, & Salsabilla, S. (2019). Indikasi Geografis atas Carica Dieng Sebagai Strategi Penguatan Ekonomi Daerah. Suara Hukum, 105-120.

Ningsih, E., Dedih, & Supriyadi. (2017). SISTEM PENDUKUNG KEPUTUSAN MENENTUKAN PELUANG USAHA MAKANAN YANG TEPAT MENGGUNAKAN WEIGHTED PRODUCT (WP) BERBASIS WEB. ILKOM Jurnal Ilmiah Volume 9 Nomor 3, 244-254.

Nugroho, C. G., Nugroho, D., and Fitriasih, S. H. DECISION SUPPORT SYSTEM FOR THE SELECTION OF CONTRACEPTION METHODS IN WOMEN OF RELIABLE AGE WITH K-NEAREST NEIGHBOUR (KKN) ALGORITHM. Jurnal Ilmiah SINUS. 2015; 21-29.

Mustakim, & Oktaviani, G. (2016). Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa. Jurnal Sains, Teknologi dan Industri, Vol. 13, No.2, 195-202.

Pelangi, H. R., Chandra, K., and Yuliyanti, L. APPLICATION OF DATA MINING TO DETERMINE THE POTENTIAL OF DAILY RAIN USING THE K NEAREST NEIGHBOR (KNN) ALGORITHM. LPPM STMIK Lombok. 2020; 3(1).

Setyoko, W., Hasbi, M., & Fitriasih, S. H. (2018). SISTEM PENDUKUNG KEPUTUSAN PREDIKSI POTENSI KUALITAS KREDIT CALON DEBITUR MENGGUNAKAN METODE K-NEAREST NEIGHBOR PADA BPR KARTASURA MAKMUR DI SUKOHARJO. Jurnal Tikomsin, 8.

Rusydiana, A. S. (2020). PREDIKSI PERTUMBUHAN PERBANKAN SYARIAH DI INDONESIA TAHUN 2020 DENGAN QUANTITATIVE METHODS. Jurnal Ekonomi Syariah, Vol. 4, No. 2., 75-91.

Cholifah, W. N., Yulianingsih, & Sagita, S. M. (2018). PENGUJIAN BLACK BOX TESTING PADA APLIKASI ACTION DAN STRATEGY BERBASIS ANDROID DENGAN TEKNOLOGI PHONEGAP. Jurnal String Vol. 3 No.2 Desember 2018, 206-210.

Munawar. (2018). Analisis Perancangan Sistem Berorientasi Objek dengan UML. Bandung: Informatika.

Riszky, A. R., & Sadikin, M. (2019). Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi dan Sistem Komputer, Volume 7, Nomor 3, 103-108.

Budiman, A. S., & Parandani, X. A. (2018). UJI AKURASI KLASIFIKASI DAN VALIDASI DATA PADA PENGGUNAAN METODE MEMBERSHIP FUNCTION DAN ALGORITMA C4.5 DALAM PENILAIAN PENERIMA BEASISWA. Jurnal SIMETRIS, Vol. 9 No. 1, 565-578.

Nugraha, P. D., Al Faraby, S., & Adiwijaya. (2018). Klasifikasi Dokumen Menggunakan Metode k-Nearest Neighbor dengan Information Gain. e-Proceeding of Engineering : Vol.5, No.1, 1541.

Downloads

Published

2022-09-07